• Editors' Suggestion

Transport between twisted graphene layers

R. Bistritzer and A. H. MacDonald
Phys. Rev. B 81, 245412 – Published 8 June 2010

Abstract

Commensurate-incommensurate transitions are ubiquitous in physics and are often accompanied by intriguing phenomena. In few-layer graphene (FLG) systems, commensurability between honeycomb lattices on adjacent layers is regulated by their relative orientation angle θ, which is in turn dependent on sample preparation procedures. Because incommensurability suppresses interlayer hybridization, it is often claimed that graphene layers can be electrically isolated by a relative twist, even though they are vertically separated by a fraction of a nanometer. We present a theory of interlayer transport in FLG systems which reveals a richer picture in which the specific conductance depends sensitively on θ, single-layer Bloch-state lifetime, in-plane magnetic field, and bias voltage. We find that linear and differential conductances are generally large and negative near commensurate values of θ, and small and positive otherwise. We show that accounting for interlayer coupling may be essential for describing transport in FLG despite its physically insignificant effect on the band structure of the system.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 5 April 2010

DOI:https://doi.org/10.1103/PhysRevB.81.245412

©2010 American Physical Society

Authors & Affiliations

R. Bistritzer and A. H. MacDonald

  • Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 81, Iss. 24 — 15 June 2010

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×