Phonon effects on x-ray absorption and nuclear magnetic resonance spectroscopies

Ruidy Nemausat, Delphine Cabaret, Christel Gervais, Christian Brouder, Nicolas Trcera, Amélie Bordage, Ion Errea, and Francesco Mauri
Phys. Rev. B 92, 144310 – Published 29 October 2015

Abstract

In material sciences, spectroscopic approaches combining ab initio calculations with experiments are commonly used to accurately analyze the experimental spectral data. Most state-of-the-art first-principles calculations are usually performed assuming an equilibrium static lattice. Yet, nuclear motion affects spectra even when reduced to the zero-point motion at 0 K. We propose a framework based on density-functional theory that includes quantum thermal fluctuations in theoretical x-ray absorption near-edge structure (XANES) and solid-state nuclear magnetic resonance (NMR) spectroscopies and allows to well describe temperature effects observed experimentally. Within the Born-Oppenheimer and quasiharmonic approximations, we incorporate the nuclear motion by generating several nonequilibrium configurations from the dynamical matrix. The averaged calculated XANES and NMR spectral data have been compared to experiments in MgO. The good agreement obtained between experiments and calculations validates the developed approach, which suggests that calculating the XANES spectra at finite temperature by averaging individual nonequilibrium configurations is a suitable approximation. This study highlights the relevance of phonon renormalization and the relative contributions of thermal expansion and nuclear dynamics on NMR and XANES spectra on a wide range of temperatures.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 16 September 2015

DOI:https://doi.org/10.1103/PhysRevB.92.144310

©2015 American Physical Society

Authors & Affiliations

Ruidy Nemausat1,2,*, Delphine Cabaret1, Christel Gervais2, Christian Brouder1, Nicolas Trcera3, Amélie Bordage4, Ion Errea5,6, and Francesco Mauri1

  • 1Sorbonne Universités, UPMC Univ Paris 06, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR CNRS 7590, 4 place Jussieu, F-75005, Paris, France
  • 2Sorbonne Universités, UPMC Univ Paris 06, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR CNRS 7574, Collège de France, 11 place Marcelin Berthelot, F-75005 Paris, France
  • 3Synchrotron SOLEIL, L'Orme des Merisiers, St Aubin, BP 48, F-91192 Gif sur Yvette, France
  • 4Université Paris-Sud, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), UMR CNRS 8182, 15 rue du doyen Georges Poitou, F-91400, Orsay, France
  • 5Fisika Aplikatua 1 Saila, EUITI, University of the Basque Country (UPV/EHU), Rafael Moreno “Pitxitxi” Pasealekua 3, 48013 Bilbao, Basque Country, Spain
  • 6Donostia International Physics Center (DIPC), Manuel Lardizabal Pasealekua 4, 20018 Donostia-San Sebastián, Basque Country, Spain

  • *ruidy.nemausat@impmc.upmc.fr

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 92, Iss. 14 — 1 October 2015

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×