• Rapid Communication

Extracting the quantum metric tensor through periodic driving

Tomoki Ozawa and Nathan Goldman
Phys. Rev. B 97, 201117(R) – Published 31 May 2018
PDFHTMLExport Citation

Abstract

We propose a generic protocol to experimentally measure the quantum metric tensor, a fundamental geometric property of quantum states. Our method is based on the observation that the excitation rate of a quantum state directly relates to components of the quantum metric upon applying a proper time-periodic modulation. We discuss the applicability of this scheme to generic two-level systems, where the Hamiltonian's parameters can be externally tuned, and also to the context of Bloch bands associated with lattice systems. As an illustration, we extract the quantum metric of the multiband Hofstadter model. Moreover, we demonstrate how this method can be used to directly probe the spread functional, a quantity which sets the lower bound on the spread of Wannier functions and signals phase transitions. Our proposal offers a universal probe for quantum geometry, which could be readily applied in a wide range of physical settings, ranging from superconducting quantum circuits to ultracold atomic gases.

  • Figure
  • Figure
  • Figure
  • Received 19 March 2018

DOI:https://doi.org/10.1103/PhysRevB.97.201117

©2018 American Physical Society

Physics Subject Headings (PhySH)

Atomic, Molecular & Optical

Authors & Affiliations

Tomoki Ozawa and Nathan Goldman

  • Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, CP 231, Campus Plaine, B-1050 Brussels, Belgium

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 97, Iss. 20 — 15 May 2018

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×