Topological interface modes in local resonant acoustic systems

Degang Zhao, Meng Xiao, C. W. Ling, C. T. Chan, and Kin Hung Fung
Phys. Rev. B 98, 014110 – Published 27 July 2018

Abstract

Topological phononic crystals are artificial periodic structures that can support nontrivial acoustic topological bands, and their topological properties are linked to the existence of topological edge modes. Most previous studies have been focused on the topological edge modes in Bragg gaps, which are induced by lattice scattering. While local resonant gaps would be of great use in subwavelength control of acoustic waves, whether it is possible to achieve topological interface states in local resonant gaps is a question. In this paper, we study the topological properties of subwavelength bands in a local resonant acoustic system and elaborate the band-structure evolution using a spring-mass model. Our acoustic structure can produce three band gaps in the subwavelength region: one originates from the local resonance of unit cell and the other two stem from band folding. It is found that the topological interface states can only exist in the band-folding-induced band gaps, but never appear in the local resonant band gap. In addition, the numerical simulation in a practical system perfectly agrees with the theoretical results. Our study provides an effective approach of producing robust acoustic topological interface states in the subwavelength region.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 12 December 2017
  • Revised 11 July 2018

DOI:https://doi.org/10.1103/PhysRevB.98.014110

©2018 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

Degang Zhao1,2, Meng Xiao2, C. W. Ling3, C. T. Chan2, and Kin Hung Fung3,*

  • 1Department of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
  • 2Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
  • 3Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China

  • *khfung@polyu.edu.hk

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 98, Iss. 1 — 1 July 2018

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×