• Editors' Suggestion
  • Open Access

Production of charged pions, kaons, and (anti-)protons in Pb-Pb and inelastic pp collisions at sNN=5.02 TeV

S. Acharya et al. (ALICE Collaboration )
Phys. Rev. C 101, 044907 – Published 29 April 2020

Abstract

Midrapidity production of π±, K±, and (p¯)p measured by the ALICE experiment at the CERN Large Hadron Collider, in Pb-Pb and inelastic pp collisions at sNN=5.02 TeV, is presented. The invariant yields are measured over a wide transverse momentum (pT) range from hundreds of MeV/c up to 20 GeV/c. The results in Pb-Pb collisions are presented as a function of the collision centrality, in the range 090%. The comparison of the pT-integrated particle ratios, i.e., proton-to-pion (p/π) and kaon-to-pion (K/π) ratios, with similar measurements in Pb-Pb collisions at sNN=2.76 TeV show no significant energy dependence. Blast-wave fits of the pT spectra indicate that in the most central collisions radial flow is slightly larger at 5.02 TeV with respect to 2.76 TeV. Particle ratios (p/π, K/π) as a function of pT show pronounced maxima at pT3GeV/c in central Pb-Pb collisions. At high pT, particle ratios at 5.02 TeV are similar to those measured in pp collisions at the same energy and in Pb-Pb collisions at sNN=2.76 TeV. Using the pp reference spectra measured at the same collision energy of 5.02 TeV, the nuclear modification factors for the different particle species are derived. Within uncertainties, the nuclear modification factor is particle species independent for high pT and compatible with measurements at sNN=2.76 TeV. The results are compared to state-of-the-art model calculations, which are found to describe the observed trends satisfactorily.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
9 More
  • Received 14 November 2019
  • Accepted 2 March 2020

DOI:https://doi.org/10.1103/PhysRevC.101.044907

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

©2020 CERN, for the ALICE Collaboration

Physics Subject Headings (PhySH)

Nuclear Physics

Authors & Affiliations

Click to Expand

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 101, Iss. 4 — April 2020

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review C

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×