Tuning gravitational-wave detector networks to measure compact binary mergers

Scott A. Hughes
Phys. Rev. D 66, 102001 – Published 12 November 2002
PDFExport Citation

Abstract

Gravitational waves generated by the final merger of compact binary systems depend on the structure of the binary’s members. If the binary contains neutron stars, measuring such waves can teach us about the properties of matter at extreme densities. Unfortunately, these waves are typically at high frequency where the sensitivity of broadband detectors is not good. Learning about dense matter from these waves will require networks of broadband detectors combined with narrowband detectors that have good sensitivity at high frequencies. This paper presents an algorithm by which a network can be “tuned,” in accordance with the best available information, in order to most effectively measure merger waves. The algorithm is presented in the context of a toy model that captures the qualitative features of narrowband detectors and of certain binary neutron star merger wave models. By using what is learned from a sequence of merger measurements, the network can be gradually tuned in order to accurately measure the waves. The number of measurements needed to reach this stage depends upon the waves’ signal strength, the number of narrowband detectors available for the measurement, and the detailed characteristics of the waves that carry the merger information. Future studies will go beyond this toy model, encompassing a more realistic description of both the detectors and the gravitational waves.

  • Received 3 September 2002

DOI:https://doi.org/10.1103/PhysRevD.66.102001

©2002 American Physical Society

Authors & Affiliations

Scott A. Hughes*

  • Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106

  • *Electronic address: hughes@kitp.ucsb.edu

References (Subscription Required)

Click to Expand
Issue

Vol. 66, Iss. 10 — 15 November 2002

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×