• Open Access

Determining the nonperturbative Collins-Soper kernel from lattice QCD

Markus A. Ebert, Iain W. Stewart, and Yong Zhao
Phys. Rev. D 99, 034505 – Published 19 February 2019

Abstract

At small transverse momentum qT, transverse-momentum dependent parton distribution functions (TMDPDFs) arise as genuinely nonperturbative objects that describe Drell-Yan like processes in hadron collisions as well as semi-inclusive deep-inelastic scattering. TMDPDFs naturally depend on the hadron momentum, and the associated evolution is determined by the Collins-Soper equation. For qTΛQCD the corresponding evolution kernel (or anomalous dimension) is nonperturbative and must be determined as an independent ingredient in order to relate TMDPDFs at different scales. We propose a method to extract this kernel using lattice QCD and the large-momentum effective theory, where the physical TMD correlation involving light-like paths is approximated by a quasi-TMDPDF, defined using equal-time correlation functions with a large-momentum hadron state. The kernel is determined from a ratio of quasi-TMDPDFs extracted at different hadron momenta.

  • Figure
  • Figure
  • Received 12 November 2018

DOI:https://doi.org/10.1103/PhysRevD.99.034505

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Nuclear Physics

Authors & Affiliations

Markus A. Ebert*, Iain W. Stewart, and Yong Zhao

  • Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

  • *ebert@mit.edu
  • iains@mit.edu
  • yzhaoqcd@mit.edu

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 99, Iss. 3 — 1 February 2019

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×