Variational bounds on energy dissipation in incompressible flows. III. Convection

Charles R. Doering and Peter Constantin
Phys. Rev. E 53, 5957 – Published 1 June 1996
PDFExport Citation

Abstract

Building on a method of analysis for the Navier-Stokes equations introduced by Hopf [Math. Ann. 117, 764 (1941)], a variational principle for upper bounds on the largest possible time averaged convective heat flux is derived from the Boussinesq equations of motion. When supplied with appropriate test background fields satisfying a spectral constraint, reminiscent of an energy stability condition, the variational formulation produces rigorous upper bounds on the Nusselt number (Nu) as a function of the Rayleigh number (Ra). For the case of vertical heat convection between parallel plates in the absence of sidewalls, a simplified (but rigorous) formulation of the optimization problem yields the large Rayleigh number bound Nu≤0.167 Ra1/2-1. Nonlinear Euler-Lagrange equations for the optimal background fields are also derived, which allow us to make contact with the upper bound theory of Howard [J. Fluid Mech. 17, 405 (1963)] for statistically stationary flows. The structure of solutions of the Euler-Lagrange equations are elucidated from the geometry of the variational constraints, which sheds light on Busse’s [J. Fluid Mech. 37, 457 (1969)] asymptotic analysis of general solutions to Howard’s Euler-Lagrange equations. The results of our analysis are discussed in the context of theory, recent experiments, and direct numerical simulations. © 1996 The American Physical Society.

  • Received 16 January 1996

DOI:https://doi.org/10.1103/PhysRevE.53.5957

©1996 American Physical Society

Authors & Affiliations

Charles R. Doering

  • Center for Nonlinear Studies, MS-B258, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

Peter Constantin

  • Department of Mathematics, University of Chicago, Chicago, Illinois 60637

References (Subscription Required)

Click to Expand
Issue

Vol. 53, Iss. 6 — June 1996

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×