Stochastic description of single nucleosome repositioning by ACF remodelers

Yves Vandecan and Ralf Blossey
Phys. Rev. E 85, 061920 – Published 22 June 2012

Abstract

Chromatin remodeling plays a crucial role in the activation or repression of transcription of eukaryotic genes. The chromatin remodeler ACF acts as a dimeric, processive motor to evenly space nucleosomes, favoring repression of gene transcription. Single-molecule experiments have established that ACF moves the nucleosome more efficiently towards the longer flanking DNA than towards the shorter flanking DNA, thereby centering an initially ill-positioned nucleosome on DNA substrates. In this paper we present a one-motor model with nucleosomal repositioning rates dependent on the DNA flanking length. The corresponding master equation is solved analytically with experimentally relevant parameter values. The velocity profile and the effective diffusion constant for nucleosome sliding, computed from the probability distributions, are in accordance with available experimental data. In order to address the observed kinetic pauses in experimental Förster Resonance Energy Transfer profiles, we extend the master equation to account for transitions between explicit motor states, i.e., adenosine triphosphate (ATP) loading and ATP hydrolysis in both ACF motors. The results of this extended two-motor model are compared to the previous effective one-motor model and allow insights into the role of the synchronization of the two motors acting on the nucleosome.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
3 More
  • Received 22 March 2012

DOI:https://doi.org/10.1103/PhysRevE.85.061920

©2012 American Physical Society

Authors & Affiliations

Yves Vandecan and Ralf Blossey

  • Interdisciplinary Research Institute, USR 3078 CNRS and Université de Sciences et de Technologies de Lille, Parc de la Haute Borne, 50 Avenue de Halley, 59658 Villeneuve d’Ascq, France

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 85, Iss. 6 — June 2012

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×