Wilson Fermions and Axion Electrodynamics in Optical Lattices

A. Bermudez, L. Mazza, M. Rizzi, N. Goldman, M. Lewenstein, and M. A. Martin-Delgado
Phys. Rev. Lett. 105, 190404 – Published 4 November 2010

Abstract

We show that ultracold Fermi gases in optical superlattices can be used as quantum simulators of relativistic lattice fermions in 3+1 dimensions. By exploiting laser-assisted tunneling, we find an analogue of the so-called naive Dirac fermions, and thus provide a realization of the fermion doubling problem. Moreover, we show how to implement Wilson fermions, and discuss how their mass can be inverted by tuning the laser intensities. In this regime, our atomic gas corresponds to a phase of matter where Maxwell electrodynamics is replaced by axion electrodynamics: a 3D topological insulator.

  • Figure
  • Figure
  • Figure
  • Received 22 July 2010

DOI:https://doi.org/10.1103/PhysRevLett.105.190404

© 2010 The American Physical Society

Authors & Affiliations

A. Bermudez1, L. Mazza2, M. Rizzi2, N. Goldman3, M. Lewenstein4,5, and M. A. Martin-Delgado1

  • 1Departamento de Física Teórica I, Universidad Complutense, 28040 Madrid, Spain
  • 2Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching, Germany
  • 3Center for Nonlinear Phenomena and Complex Systems—Universit Libre de Bruxelles, B-1050 Brussels, Belgium
  • 4ICFO-Institut de Ciències Fotòniques, Parc Mediterrani de la Tecnologia, E-08860 Castelldefels (Barcelona), Spain
  • 5ICREA—Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain

See Also

Cold Atom Simulation of Interacting Relativistic Quantum Field Theories

J. Ignacio Cirac, Paolo Maraner, and Jiannis K. Pachos
Phys. Rev. Lett. 105, 190403 (2010)

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 105, Iss. 19 — 5 November 2010

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×