Do Halo Nuclei Follow Rutherford Elastic Scattering at Energies Below the Barrier? The Case of Li11

M. Cubero, J. P. Fernández-García, M. Rodríguez-Gallardo, L. Acosta, M. Alcorta, M. A. G. Alvarez, M. J. G. Borge, L. Buchmann, C. A. Diget, H. Al Falou, B. R. Fulton, H. O. U. Fynbo, D. Galaviz, J. Gómez-Camacho, R. Kanungo, J. A. Lay, M. Madurga, I. Martel, A. M. Moro, I. Mukha, T. Nilsson, A. M. Sánchez-Benítez, A. Shotter, O. Tengblad, and P. Walden
Phys. Rev. Lett. 109, 262701 – Published 26 December 2012

Abstract

The first measurement of the elastic scattering of the halo nucleus Li11 and its core Li9 on Pb208 at energies near the Coulomb barrier is presented. The Li11+Pb208 elastic scattering shows a strong reduction with respect to the Rutherford cross section, even at energies well below the barrier and down to very small scattering angles. This drastic change of the elastic differential cross section observed in Li11+Pb208 is the consequence of the halo structure of Li11, as it is not observed in the elastic scattering of its core Li9 at the same energies. Four-body continuum-discretized coupled-channels calculations, based on a three-body model of the Li11 projectile, are found to explain the measured angular distributions and confirm that the observed reduction is mainly due to the strong Coulomb coupling to the dipole states in the low-lying continuum of Li11. These calculations suggest the presence of a low-lying dipole resonance in Li11 close to the breakup threshold.

  • Figure
  • Figure
  • Figure
  • Received 7 October 2012

DOI:https://doi.org/10.1103/PhysRevLett.109.262701

© 2012 American Physical Society

Authors & Affiliations

M. Cubero1,2, J. P. Fernández-García3,4, M. Rodríguez-Gallardo3, L. Acosta5, M. Alcorta1, M. A. G. Alvarez3,4, M. J. G. Borge6,*, L. Buchmann7, C. A. Diget8, H. Al Falou9, B. R. Fulton8, H. O. U. Fynbo10, D. Galaviz11, J. Gómez-Camacho3,4, R. Kanungo9, J. A. Lay3, M. Madurga6, I. Martel5, A. M. Moro3, I. Mukha4, T. Nilsson12, A. M. Sánchez-Benítez5, A. Shotter7,13, O. Tengblad6, and P. Walden7

  • 1Instituto de Estructura de la Materia CSIC, E28006 Madrid, Spain
  • 2CICANUM, Universidad de Costa Rica UCR, Apartado 2060 San José, Costa Rica
  • 3Departamento de FAMN, Universidad de Sevilla, 41080 Seville, Spain
  • 4Centro Nacional de Aceleradores, Universidad de Sevilla/Junta de Andalucía/CSIC, 41092 Seville, Spain
  • 5Departamento de Física Aplicada, Universidad de Huelva, 21071 Huelva, Spain
  • 6Instituto de Estructura de la Materia CSIC, E28006 Madrid, Spain
  • 7TRIUMF, V6T2A3 Vancouver, British Columbia, Canada
  • 8Department of Physics, University of York, YO 10 5DD Heslington, York, United Kingdom
  • 9Department of Astronomy and Physics, Saint Mary’s University, Halifax B3H3C3, Nova Scotia, Canada
  • 10Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus, Denmark
  • 11CFNUL, Universidade de Lisboa, 1649-003 Lisbon, Portugal
  • 12Fundamental Physics, Chalmers University of Technology, 41296 Göteborg, Sweden
  • 13School of Physics and Astronomy, University of Edinburgh, EH9 3JZ, Edinburgh, United Kingdom

  • *mj.borge@csic.es

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 109, Iss. 26 — 28 December 2012

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×