• Open Access

Relativistic Fluid Dynamics Far From Local Equilibrium

Paul Romatschke
Phys. Rev. Lett. 120, 012301 – Published 5 January 2018
PDFHTMLExport Citation

Abstract

Fluid dynamics is traditionally thought to apply only to systems near local equilibrium. In this case, the effective theory of fluid dynamics can be constructed as a gradient series. Recent applications of resurgence suggest that this gradient series diverges, but can be Borel resummed, giving rise to a hydrodynamic attractor solution which is well defined even for large gradients. Arbitrary initial data quickly approaches this attractor via nonhydrodynamic mode decay. This suggests the existence of a new theory of far-from-equilibrium fluid dynamics. In this Letter, the framework of fluid dynamics far from local equilibrium for a conformal system is introduced, and the hydrodynamic attractor solutions for resummed Baier-Romatschke-Son-Starinets-Stephanov theory, kinetic theory in the relaxation time approximation, and strongly coupled N=4 super Yang-Mills theory are identified for a system undergoing Bjorken flow.

  • Figure
  • Figure
  • Received 1 June 2017

DOI:https://doi.org/10.1103/PhysRevLett.120.012301

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Nuclear Physics

Authors & Affiliations

Paul Romatschke

  • Department of Physics, University of Colorado, Boulder, Colorado 80309, USA and Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA

Article Text

Click to Expand

Supplemental Material

Click to Expand

References

Click to Expand
Issue

Vol. 120, Iss. 1 — 5 January 2018

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×