• Open Access

Critical fluctuations at a many-body exceptional point

Ryo Hanai and Peter B. Littlewood
Phys. Rev. Research 2, 033018 – Published 6 July 2020

Abstract

Critical phenomena arise ubiquitously in various contexts of physics, from condensed matter, high-energy physics, cosmology, to biological systems, and consist of slow and long-distance fluctuations near a phase transition or critical point. Usually, these phenomena are associated with the softening of a massive mode. Here, we show that a non-Hermitian-induced mechanism of critical phenomena that does not fall into this class can arise in the steady state of generic driven-dissipative many-body systems with coupled binary order parameters such as exciton-polariton condensates and driven-dissipative Bose-Einstein condensates in a double-well potential. The criticality of this “critical exceptional point” is attributed to the coalescence of the collective eigenmodes that convert all the thermal-and-dissipative-noise-activated fluctuations to the Goldstone mode, leading to anomalously giant phase fluctuations that diverge at spatial dimensions d4. Our dynamic renormalization group analysis shows that this gives rise to a strong-coupling fixed point at dimensions as high as d<8 associated with a universality class beyond the classification by Hohenberg and Halperin, indicating how anomalously strong the many-body corrections are at this point. We find that this anomalous enhancement of many-body correlation is due to the appearance of a sound mode at the critical exceptional point despite the system's dissipative character.

  • Figure
  • Figure
  • Figure
  • Received 15 September 2019
  • Revised 14 June 2020
  • Accepted 17 June 2020

DOI:https://doi.org/10.1103/PhysRevResearch.2.033018

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied PhysicsStatistical Physics & ThermodynamicsAtomic, Molecular & Optical

Authors & Affiliations

Ryo Hanai1,2,* and Peter B. Littlewood1,3

  • 1James Franck Institute and Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
  • 2Department of Physics, Osaka University, Toyonaka 560-0043, Japan
  • 3Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

  • *rhanai@uchicago.edu

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 2, Iss. 3 — July - September 2020

Subject Areas
Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Research

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×