Intermediate magnetic phase of the magnetoelectric compound (Ca,Sr)BaCo4O7 described with the superspace formalism

J. Lohr, A. L. Larralde, J. Curiale, R. Sánchez, J. Campo, G. J. Cuello, D. Sheptyakov, L. Keller, M. Kenzelmann, and G. Aurelio
Phys. Rev. B 102, 134406 – Published 6 October 2020

Abstract

In this work we report the temperature and doping-level evolution of the crystallographic and magnetic properties of the Sr-doped cobaltates Ca1xSrxBaCo4O7. The noncollinear ferrimagnetic phase known for the magnetoelectric parent compound is found to persist only for a small amount of Sr doping (x=0.02) and is accompanied by a strong unit cell distortion. In turn, further Sr doping blurs this distortion of lattice parameters and favors other magnetic arrangements. In particular, this work focuses on an intermediate temperature region 62K<T<82K that shows a plateau in the magnetization. Using neutron powder diffraction at selected temperatures and compositions, we have solved the magnetic structure of this intermediate phase. By means of the superspace group theory and its implementation in the Rietveld refinement, we found that the phase belongs to the superspace group Pna211(1/2,1/2,g)qq0s with a basic orthorhombic structure and a modulation of the magnetic moments along the c axis. The propagation vector is k=(12,12,g) with g0.02 and possibly dependent on temperature. A modulated spin structure with distinct behaviors of the triangular and kagome cobalt sites is reported in “114” cobaltates.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
5 More
  • Received 22 July 2020
  • Accepted 14 September 2020

DOI:https://doi.org/10.1103/PhysRevB.102.134406

©2020 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

J. Lohr1, A. L. Larralde2, J. Curiale3,4, R. Sánchez3,4, J. Campo5, G. J. Cuello6, D. Sheptyakov7, L. Keller7, M. Kenzelmann7, and G. Aurelio8,*

  • 1Comisión Nacional de Energía Atómica–Laboratorio Argentino de Haces de Neutrones, Centro Atómico Bariloche, Av. Bustillo 9500 R8402AGP, S. C. de Bariloche, Argentina
  • 2Laboratorio de Cristalografía Aplicada, Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, Martín de Irigoyen 3100, Campus Miguelete, San Martín (1650), Buenos Aires, Argentina
  • 3Instituto de Nanociencia y Nanotecnología CNEA-CONICET, Centro Atómico Bariloche, Av. Bustillo 9500 R8402AGP, S. C. de Bariloche, Argentina
  • 4Instituto Balseiro, Universidad Nacional de Cuyo - Comisión Nacional de Energía Atómica, Av. Bustillo 9500 R8402AGP, S. C. de Bariloche, Argentina
  • 5Instituto de Ciencia de Materiales de Aragón (CSIC - Universidad de Zaragoza) and Departamento de Física de Materia Condensada, Universidad de Zaragoza. C/Pedro Cerbuna 12, E-50009 Zaragoza, Spain
  • 6Institut Laue Langevin. 71, Av des Martyrs, BP 156 F-38042 Grenoble, France
  • 7Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
  • 8Comisión Nacional de Energıa Atómica and CONICET Laboratorio Argentino de Haces de Neutrones. Centro Atómico Bariloche, Av. Bustillo 9500 R8402AGP, S. C. de Bariloche, Argentina

  • *gaurelio@cab.cnea.gov.ar, she/her/hers

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 102, Iss. 13 — 1 October 2020

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×