• Editors' Suggestion

Witnessing entanglement in quantum magnets using neutron scattering

A. Scheie, Pontus Laurell, A. M. Samarakoon, B. Lake, S. E. Nagler, G. E. Granroth, S. Okamoto, G. Alvarez, and D. A. Tennant
Phys. Rev. B 103, 224434 – Published 28 June 2021; Erratum Phys. Rev. B 107, 059902 (2023)
PDFHTMLExport Citation

Abstract

We demonstrate how quantum entanglement can be directly witnessed in the quasi-1D Heisenberg antiferromagnet KCuF3. We apply three entanglement witnesses—one tangle, two tangle, and quantum Fisher information—to its inelastic neutron spectrum and compare with spectra simulated by finite-temperature density matrix renormalization group (DMRG) and classical Monte Carlo methods. We find that each witness provides direct access to entanglement. Of these, quantum Fisher information is the most robust experimentally and indicates the presence of at least bipartite entanglement up to at least 50 K, corresponding to around 10% of the spinon zone-boundary energy. We apply quantum Fisher information to higher spin-S Heisenberg chains and show theoretically that the witnessable entanglement gets suppressed to lower temperatures as the quantum number increases. Finally, we outline how these results can be applied to higher dimensional quantum materials to witness and quantify entanglement.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
5 More
  • Received 16 February 2021
  • Revised 21 May 2021
  • Accepted 25 May 2021

DOI:https://doi.org/10.1103/PhysRevB.103.224434

©2021 American Physical Society

Physics Subject Headings (PhySH)

Quantum Information, Science & TechnologyCondensed Matter, Materials & Applied Physics

Erratum

Erratum: Witnessing entanglement in quantum magnets using neutron scattering [Phys. Rev. B 103, 224434 (2021)]

A. Scheie, Pontus Laurell, A. M. Samarakoon, B. Lake, S. E. Nagler, G. E. Granroth, S. Okamoto, G. Alvarez, and D. A. Tennant
Phys. Rev. B 107, 059902 (2023)

Authors & Affiliations

A. Scheie1,*,†, Pontus Laurell2,3,*,‡, A. M. Samarakoon1, B. Lake4,5, S. E. Nagler1,6, G. E. Granroth1, S. Okamoto7,6, G. Alvarez2,3, and D. A. Tennant1,6,8,§

  • 1Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
  • 2Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
  • 3Computational Science and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
  • 4Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner Platz 1, D-14109 Berlin, Germany
  • 5Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstraße 36, D-10623 Berlin, Germany
  • 6Quantum Science Center, Oak Ridge National Laboratory, Tennessee 37831, USA
  • 7Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
  • 8Shull Wollan Center - A Joint Institute for Neutron Sciences, Oak Ridge National Laboratory, Tennessee 37831, USA

  • *These authors contributed equally to this work.
  • scheieao@ornl.gov
  • laurell@utexas.edu
  • §tennantda@ornl.gov

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 103, Iss. 22 — 1 June 2021

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×