Spin-vibron coupling effects in single-molecule magnets grafted to a nanoelectromechanical system

V. Moldoveanu and R. Dragomir
Phys. Rev. B 104, 075441 – Published 23 August 2021

Abstract

We present a theoretical analysis of the interplay between the spin-vibron and electron-vibron interactions in a hybrid system made of a single-molecule magnet and a suspended conductor. The latter is coupled to particle reservoirs and supports quantized vibrational modes which, once activated, interact with the localized magnetic moment S of the nanomagnet. The dynamics of the molecular spin, the average vibron number, and the transient currents are calculated from the reduced density operator of the hybrid system. We focus on the effect of the vibron-assisted transitions from the lowest energy spin doublet Sz=±S to higher energy excited states. The numerical simulations performed for the simplest case S=2 prove that the vibron-assisted spin transitions and dynamics can be described in terms of a three-level Λ model borrowed from quantum optics. In particular we predict the existence of Rabi oscillations of the transient currents as fingerprints of the spin-vibron coupling. The role of symmetric or asymmetric bias configurations in setting different mixtures of molecular spin states in the steady-state regime is also emphasized.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 7 June 2021
  • Revised 26 July 2021
  • Accepted 12 August 2021

DOI:https://doi.org/10.1103/PhysRevB.104.075441

©2021 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

V. Moldoveanu and R. Dragomir

  • National Institute of Materials Physics, Atomistilor 405A, Magurele 077125, Romania

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 104, Iss. 7 — 15 August 2021

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×