Wavelet resolved coherence beating in the Overhauser field of a thermal nuclear spin ensemble

Ekrem Taha Güldeste and Ceyhun Bulutay
Phys. Rev. B 105, 075202 – Published 14 February 2022

Abstract

This work introduces the so-called synchrosqueezed wavelet transform, to shed light on the dipolar fluctuations of a thermal ensemble of nuclear spins in a diamond crystal structure, hyperfine-coupled to a central spin. The raw time series of the nuclear spin bath coherent dynamics is acquired through the two-point correlation function computed using the cluster correlation expansion method. The dynamics can be conveniently analyzed according to zero-, single-, and double-quantum transitions derived from the dipolar pairwise spin flips. We show that in the early-time behavior when the coherence is preserved in the spin ensemble, the Overhauser field fluctuations are modulated by dipole-dipole-induced small inhomogeneous detunings of nearly resonant transitions within the bath. The resulting beating extending over relatively longer time intervals is featured on the scalograms where both temporal and spectral behaviors of nuclear spin noise are unveiled simultaneously. Moreover, a second kind of beating that affects faster dynamics is readily discernible, originating from the inhomogeneous spread of the hyperfine coupling of each nucleus with the central spin. Additionally, any quadrupolar nuclei within the bath imprint as beating residing in the zero-quantum channel. The nuclear spin environment can be directionally probed by orienting the hyperfine axis. Thereby, crucial spatial information about the closely separated spin clusters surrounding the central spin are accessible. Thus, a wavelet-based postprocessing can facilitate the identification of proximal nuclear spins as revealed by their unique beating patterns on the scalograms. Finally, when these features are overwhelmed by either weakly or strongly coupled classical noise sources, we demonstrate the efficacy of thresholding techniques in the wavelet domain in denoising contaminated scalograms.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
1 More
  • Received 23 November 2021
  • Revised 31 January 2022
  • Accepted 1 February 2022

DOI:https://doi.org/10.1103/PhysRevB.105.075202

©2022 American Physical Society

Physics Subject Headings (PhySH)

Quantum Information, Science & TechnologyCondensed Matter, Materials & Applied PhysicsAtomic, Molecular & Optical

Authors & Affiliations

Ekrem Taha Güldeste and Ceyhun Bulutay*

  • Department of Physics, Bilkent University, Ankara 06800, Turkey

  • *bulutay@fen.bilkent.edu.tr

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 105, Iss. 7 — 15 February 2022

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×