Magnetoelastic resonance as a probe for exchange springs at antiferromagnet-ferromagnet interfaces

K. M. Seemann, O. Gomonay, Y. Mokrousov, A. Hörner, S. Valencia, P. Klamser, F. Kronast, A. Erb, A. T. Hindmarch, A. Wixforth, C. H. Marrows, and P. Fischer
Phys. Rev. B 105, 144432 – Published 26 April 2022

Abstract

In prototype ferromagnet-antiferromagnet interfaces we demonstrate that surface acoustic waves can be used to identify complex magnetic phases arising upon evolution of exchange springs in an applied field. Applying sub-GHz surface acoustic waves to study the domain structure of the ferromagnetic layer in exchange-biased bilayers of Ir20Mn80Co60Fe20B20, we are able to associate the magnetoelastic resonance with the presence of the exchange spin-spirals in both the ferromagnetic and antiferromagnetic layer. Our findings offer a complementary, integrative insight into emergent magnetic materials for applications of noncollinear spin textures in view of low-energy-consumption spintronic devices.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 23 January 2022
  • Revised 29 March 2022
  • Accepted 30 March 2022
  • Corrected 3 May 2022

DOI:https://doi.org/10.1103/PhysRevB.105.144432

©2022 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Corrections

3 May 2022

Correction: The data availability statement was missing and has been inserted.

Authors & Affiliations

K. M. Seemann1,2,*, O. Gomonay3, Y. Mokrousov3,4, A. Hörner5, S. Valencia6, P. Klamser6, F. Kronast6, A. Erb7, A. T. Hindmarch8,2, A. Wixforth5, C. H. Marrows2, and P. Fischer9,10

  • 1Université de Lorraine, CNRS, IJL, F-54000 Nancy, France
  • 2School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, United Kingdom
  • 3Institut für Physik, Johannes Gutenberg Universität Mainz, D-55099 Mainz, Germany
  • 4Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, D-52425 Jülich, Germany
  • 5Lehrstuhl für Experimentalphysik I and Augsburg Center for Innovative Technologies, ACIT, D-86159 Augsburg, Germany
  • 6Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, D-12489 Berlin, Germany
  • 7Walther Meissner Institut für Tieftemperaturforschung, Bayerische Akademie der Wissenschaften, Walther-Meissner-Strasse 8, D-85748 Garching, Germany
  • 8Department of Physics, Durham University, Durham DH1 3LE, United Kingdom
  • 9Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley California 94720, USA
  • 10Physics Department, University of California Santa Cruz, Santa Cruz 94056, California, USA

  • *k.m.seemann@gmail.com

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 105, Iss. 14 — 1 April 2022

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×