• Editors' Suggestion

Spectroscopic perspective on the interplay between electronic and magnetic properties of magnetically doped topological insulators

J. A. Krieger, Cui-Zu Chang, M.-A. Husanu, D. Sostina, A. Ernst, M. M. Otrokov, T. Prokscha, T. Schmitt, A. Suter, M. G. Vergniory, E. V. Chulkov, J. S. Moodera, V. N. Strocov, and Z. Salman
Phys. Rev. B 96, 184402 – Published 2 November 2017
PDFHTMLExport Citation

Abstract

We combine low energy muon spin rotation (LEμSR) and soft-x-ray angle-resolved photoemission spectroscopy (SX-ARPES) to study the magnetic and electronic properties of magnetically doped topological insulators, (Bi,Sb)2Te3. We find that one achieves a full magnetic volume fraction in samples of (V/Cr)x(Bi,Sb)2xTe3 at doping levels x0.16. The observed magnetic transition is not sharp in temperature indicating a gradual magnetic ordering. We find that the evolution of magnetic ordering is consistent with formation of ferromagnetic islands which increase in number and/or volume with decreasing temperature. Resonant ARPES at the V L3 edge reveals a nondispersing impurity band close to the Fermi level as well as V weight integrated into the host band structure. Calculations within the coherent potential approximation of the V contribution to the spectral function confirm that this impurity band is caused by V in substitutional sites. The implications of our results on the observation of the quantum anomalous Hall effect at mK temperatures are discussed.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
5 More
  • Received 8 August 2017

DOI:https://doi.org/10.1103/PhysRevB.96.184402

©2017 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

J. A. Krieger1,2, Cui-Zu Chang3,4, M.-A. Husanu5,6, D. Sostina5, A. Ernst7,8, M. M. Otrokov9,10, T. Prokscha1, T. Schmitt5, A. Suter1, M. G. Vergniory11,12, E. V. Chulkov9,11,13, J. S. Moodera3,14, V. N. Strocov5, and Z. Salman1,*

  • 1Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
  • 2Laboratorium für Festkörperphysik, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
  • 3Francis Bitter Magnet Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
  • 4Department of Physics, The Penn State University, University Park, Pennsylvania 16802, USA
  • 5Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
  • 6National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania
  • 7Institut für Theoretische Physik, Johannes Kepler Universität, A 4040 Linz, Austria
  • 8Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, 06120 Halle, Germany
  • 9Departamento de Física de Materiales UPV/EHU, Centro de Física de Materiales CFM - MPC and Centro Mixto CSIC-UPV/EHU, 20080 San Sebastián/Donostia, Spain
  • 10Tomsk State University, pr. Lenina 36, 634050 Tomsk, Russia
  • 11Donostia International Physics Center, P. Manuel de Lardizabal 4, San Sebastián, 20018 Basque Country, Spain
  • 12Department of Applied Physics II, Faculty of Science and Technology, University of the Basque Country UPV/EHU, Apdo. 644, 48080 Bilbao, Spain
  • 13Saint Petersburg State University, 198504 Saint Petersburg, Russia
  • 14Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

  • *Corresponding author: zaher.salman@psi.ch

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 96, Iss. 18 — 1 November 2017

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×