Monte Carlo simulations of trapped ultracold neutrons in the UCNτ experiment

Nathan Callahan et al.
Phys. Rev. C 100, 015501 – Published 8 July 2019

Abstract

In the UCNτ experiment, ultracold neutrons (UCN) are confined by magnetic fields and the Earth's gravitational field. Field-trapping mitigates the problem of UCN loss on material surfaces, which caused the largest correction in prior neutron experiments using material bottles. However, the neutron dynamics in field traps differ qualitatively from those in material bottles. In the latter case, neutrons bounce off material surfaces with significant diffusivity and the population quickly reaches a static spatial distribution with a density gradient induced by the gravitational potential. In contrast, the field-confined UCN—whose dynamics can be described by Hamiltonian mechanics—do not exhibit the stochastic behaviors typical of an ideal gas model as observed in material bottles. In this report, we will describe our efforts to simulate UCN trapping in the UCNτ magnetogravitational trap. We compare the simulation output to the experimental results to determine the parameters of the neutron detector and the input neutron distribution. The tuned model is then used to understand the phase-space evolution of neutrons observed in the UCNτ experiment. We will discuss the implications of chaotic dynamics on controlling the systematic effects, such as spectral cleaning and microphonic heating, for a successful UCN lifetime experiment to reach a 0.01% level of precision.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
12 More
  • Received 15 February 2019

DOI:https://doi.org/10.1103/PhysRevC.100.015501

©2019 American Physical Society

Physics Subject Headings (PhySH)

Nuclear PhysicsNonlinear Dynamics

Authors & Affiliations

Click to Expand

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 100, Iss. 1 — July 2019

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review C

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×