• Editors' Suggestion
  • Open Access

First constraint on coherent elastic neutrino-nucleus scattering in argon

D. Akimov et al.
Phys. Rev. D 100, 115020 – Published 9 December 2019

Abstract

Coherent elastic neutrino-nucleus scattering (CEvNS) is calculated to be the dominant neutrino scattering channel for neutrinos of energy Eν<100MeV. We report a limit for this process from data collected in an engineering run of the 29 kg CENNS-10 liquid argon detector located 27.5 m from the pion decay-at-rest neutrino source at the Oak Ridge National Laboratory Spallation Neutron Source (SNS) with 4.2×1022 protons on target. The dataset provided constraints on beam-related backgrounds critical for future measurements and yielded <7.4 candidate CEvNS events which implies a cross section for the process, averaged over the SNS pion decay-at-rest flux, of <3.4×1039cm2, a limit within twice the Standard Model prediction. This is the first limit on CEvNS from an argon nucleus and confirms the earlier CsI[Na] nonstandard neutrino interaction constraints from the collaboration. This run demonstrated the feasibility of the ongoing experimental effort to detect CEvNS with liquid argon.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
3 More
  • Received 19 September 2019

DOI:https://doi.org/10.1103/PhysRevD.100.115020

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Particles & Fields

Authors & Affiliations

Click to Expand

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 100, Iss. 11 — 1 December 2019

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×