• Open Access

Search for dark matter in association with a Higgs boson decaying to two photons at s=13TeV with the ATLAS detector

M. Aaboud et al. (ATLAS Collaboration)
Phys. Rev. D 96, 112004 – Published 8 December 2017

Abstract

A search for dark matter in association with a Higgs boson decaying to two photons is presented. This study is based on data collected with the ATLAS detector, corresponding to an integrated luminosity of 36.1fb1 of proton-proton collisions at the LHC at a center-of-mass energy of 13 TeV in 2015 and 2016. No significant excess over the expected background is observed. Upper limits at 95% confidence level are set on the visible cross section for beyond the Standard Model physics processes, and the production cross section times branching fraction of the Standard Model Higgs boson decaying into two photons in association with missing transverse momentum in three different benchmark models. Limits at 95% confidence level are also set on the observed signal in two-dimensional mass planes. Additionally, the results are interpreted in terms of 90% confidence-level limits on the dark-matter–nucleon scattering cross section, as a function of the dark-matter particle mass, for a spin-independent scenario.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
1 More
  • Received 7 July 2017

DOI:https://doi.org/10.1103/PhysRevD.96.112004

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

© 2017 CERN, for the ATLAS Collaboration

Physics Subject Headings (PhySH)

  1. Physical Systems
Particles & Fields

Authors & Affiliations

Click to Expand

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 96, Iss. 11 — 1 December 2017

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×