Ratchet universality in the bidirectional escape from a symmetric potential well

R. Chacón, P. J. Martínez, J. M. Marcos, F. J. Aranda, and J. A. Martínez
Phys. Rev. E 103, 022203 – Published 4 February 2021; Erratum Phys. Rev. E 108, 049901 (2023)

Abstract

The present work discusses symmetry-breaking-induced bidirectional escape from a symmetric metastable potential well by the application of zero-average periodic forces in the presence of dissipation. We characterized the interplay between heteroclinic instabilities leading to chaotic escape and breaking of a generalized parity symmetry leading to directed ratchet escape to an attractor either at or at . Optimal enhancement of directed ratchet escape is found to occur when the wave form of the zero-average periodic force acting on the damped driven oscillator matches as closely as possible to a universal wave form, as predicted by the theory of ratchet universality. Specifically, the optimal approximation to the universal force triggers the almost complete destruction of the nonescaping basin for driving amplitudes which are systematically lower than those corresponding to a symmetric periodic force having the same period. We expect that this work could be potentially useful in the control of elementary dynamic processes characterized by multidirectional escape from a potential well, such as forced chaotic scattering and laser-induced dissociation of molecular systems, among others.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 16 December 2020
  • Accepted 19 January 2021

DOI:https://doi.org/10.1103/PhysRevE.103.022203

©2021 American Physical Society

Physics Subject Headings (PhySH)

Atomic, Molecular & Optical

Erratum

Erratum: Ratchet universality in the bidirectional escape from a symmetric potential well [Phys. Rev. E 103, 022203 (2021)]

R. Chacón, P. J. Martínez, J. M. Marcos, F. J. Aranda, and J. A. Martínez
Phys. Rev. E 108, 049901 (2023)

Authors & Affiliations

R. Chacón1,2, P. J. Martínez3, J. M. Marcos2,4, F. J. Aranda5, and J. A. Martínez6

  • 1Departamento de Física Aplicada, Escuela de Ingenierías Industriales, Universidad de Extremadura, Apartado Postal 382, E-06006 Badajoz, Spain
  • 2Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, E-06006 Badajoz, Spain
  • 3Departamento de Física Aplicada, E.I.N.A., Universidad de Zaragoza, E-50018 Zaragoza, Spain and Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, E-50009 Zaragoza, Spain
  • 4Departamento de Física, Facultad de Ciencias, Universidad de Extremadura, E-06006 Badajoz, Spain
  • 5Departamento de Ingeniería Eléctrica, Electrónica y Automática, Facultad de Ciencias, Universidad de Extremadura, E-06006 Badajoz, Spain
  • 6Departamento de Ingeniería Eléctrica, Electrónica y Automática, Escuela de Ingenieros Industriales, Universidad de Castilla-La Mancha, E-02071 Albacete, Spain

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 103, Iss. 2 — February 2021

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×