Test of the Gravitational Inverse Square Law at Millimeter Ranges

Shan-Qing Yang, Bi-Fu Zhan, Qing-Lan Wang, Cheng-Gang Shao, Liang-Cheng Tu, Wen-Hai Tan, and Jun Luo
Phys. Rev. Lett. 108, 081101 – Published 23 February 2012

Abstract

We report a new test of the gravitational inverse square law at millimeter ranges by using a dual-modulation torsion pendulum. An I-shaped symmetric pendulum and I-shaped symmetric attractors were adopted to realize a null experimental design. The non-Newtonian force between two macroscopic tungsten plates is measured at separations ranging down to 0.4 mm, and the validity of the null experimental design was checked by non-null Newtonian gravity measurements. We find no deviations from the Newtonian inverse square law with 95% confidence level, and this work establishes the most stringent constraints on non-Newtonian interaction in the ranges from 0.7 to 5.0 mm, and a factor of 8 improvement is achieved at the length scale of several millimeters.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 10 December 2011

DOI:https://doi.org/10.1103/PhysRevLett.108.081101

© 2012 American Physical Society

Authors & Affiliations

Shan-Qing Yang, Bi-Fu Zhan, Qing-Lan Wang, Cheng-Gang Shao, Liang-Cheng Tu, Wen-Hai Tan, and Jun Luo*

  • School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China

  • *junluo@mail.hust.edu.cn

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 108, Iss. 8 — 24 February 2012

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×