Reduction of thermal conductivity in ferroelectric SrTiO3 thin films

Alexandros Sarantopoulos, Dipanjan Saha, Wee-Liat Ong, César Magén, Jonathan A. Malen, and Francisco Rivadulla
Phys. Rev. Materials 4, 054002 – Published 14 May 2020
PDFHTMLExport Citation

Abstract

Bulk SrTiO3 is a quantum paraelectric in which an antiferrodistortive distortion below 105 K and quantum fluctuations at low temperature preclude the stabilization of a long-range ferroelectric state. However, biaxial mechanical stress, impurity doping, and Sr nonstoichiometry, among other mechanisms, are able to stabilize a ferroelectric or relaxor ferroelectric state at room temperature, which develops into a longer-range ferroelectric state below 250 K. In this paper, we show that epitaxial SrTiO3 thin films grown under tensile strain on DyScO3 exhibit a large reduction of thermal conductivity, of 60% at room temperature, with respect to identical strain-free or compressed films. The thermal conductivity shows a further reduction below 250 K, a temperature concurrent with the peak in the dielectric constant [J. H. Haeni et al., Nature (London) 430, 758 (2004)]. These results suggest that strain gradients in the relaxor and ferroelectric phase of SrTiO3 are very effective phonon scatterers, limiting the thermal transport in this material.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 19 November 2019
  • Revised 27 March 2020
  • Accepted 16 April 2020

DOI:https://doi.org/10.1103/PhysRevMaterials.4.054002

©2020 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

Alexandros Sarantopoulos1,2,*, Dipanjan Saha3, Wee-Liat Ong3,4,5, César Magén6,7, Jonathan A. Malen3,†, and Francisco Rivadulla1

  • 1Centro de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
  • 2Peter Gruenberg Institute (PGI-7), Forschungszentrum Juelich GmbH and JARA-FIT, 52425 Juelich, Germany
  • 3Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
  • 4ZJU-UIUC Institute, College of Energy Engineering, Zhejiang University, Hangzhou, Zhejiang 314400, China
  • 5State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, Zhejiang 310027, China
  • 6Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain
  • 7Laboratorio de Microscopías Avanzadas – Instituto de Nanociencia de Aragón, Universidad de Zaragoza, 50018 Zaragoza, Spain

  • *a.sarantopoulos@fz-juelich.de
  • jonmalen@andrew.cmu.edu

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 4, Iss. 5 — May 2020

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Materials

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×