• Open Access

Effect of atomic structure on the electrical response of aluminum oxide tunnel junctions

M. J. Cyster, J. S. Smith, J. A. Vaitkus, N. Vogt, S. P. Russo, and J. H. Cole
Phys. Rev. Research 2, 013110 – Published 31 January 2020

Abstract

Many nanoelectronic devices rely on thin dielectric barriers through which electrons tunnel. For instance, aluminium oxide barriers are used as Josephson junctions in superconducting electronics. The reproducibility and drift of circuit parameters in these junctions are affected by the uniformity, morphology, and composition of the oxide barriers. To improve these circuits the effect of the atomic structure on the electrical response of aluminium oxide barriers must be understood. We create three-dimensional atomistic models of aluminium oxide tunnel junctions and simulate their electronic transport properties with the nonequilibrium Green's function formalism. With this approach we are better able to understand the role that fluctuations in the density and stoichiometry of the oxide play in the electrical response of the junctions. For instance, increasing the oxide density produces an exponential increase in the junction resistance. In addition we observe the formation of metallic channels in highly oxygen-deficient junctions. We find that local variations in density or stoichiometry can lead to localized conduction channels, even for a junction of uniform thickness. The atomistic approach we have taken provides a better understanding of these transport processes and guides the design of junctions for nanoelectronics applications.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
3 More
  • Received 23 July 2019
  • Revised 18 December 2019

DOI:https://doi.org/10.1103/PhysRevResearch.2.013110

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied PhysicsQuantum Information, Science & Technology

Authors & Affiliations

M. J. Cyster1, J. S. Smith1, J. A. Vaitkus1, N. Vogt1,2, S. P. Russo1, and J. H. Cole1,*

  • 1Chemical and Quantum Physics, School of Science, RMIT University, Melbourne, Australia
  • 2HQS Quantum Simulations GmbH, 76187 Karlsruhe, Germany

  • *jared.cole@rmit.edu.au

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 2, Iss. 1 — January - March 2020

Subject Areas
Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Research

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×