Incommensurate and multiple-q magnetic misfit order in the frustrated quantum spin ladder material antlerite Cu3SO4(OH)4

Anton A. Kulbakov, Elaheh Sadrollahi, Florian Rasch, Maxim Avdeev, Sebastian Gaß, Laura Teresa Corredor Bohorquez, Anja U. B. Wolter, Manuel Feig, Roman Gumeniuk, Hagen Poddig, Markus Stötzer, F. Jochen Litterst, Inés Puente-Orench, Andrew Wildes, Eugen Weschke, Jochen Geck, Dmytro S. Inosov, and Darren C. Peets
Phys. Rev. B 106, 174431 – Published 23 November 2022
PDFHTMLExport Citation

Abstract

In frustrated magnetic systems, the competition amongst interactions can introduce extremely high degeneracy and prevent the system from readily selecting a unique ground state. In such cases, the magnetic order is often exquisitely sensitive to the balance among the interactions, allowing tuning among novel magnetically ordered phases. In antlerite, Cu3SO4(OH)4, Cu2+ (S=1/2) quantum spins populate three-leg zigzag ladders in a highly frustrated quasi-one-dimensional structural motif. We demonstrate that at zero applied field, in addition to its recently reported low-temperature phase of coupled ferromagnetic and antiferromagnetic spin chains, this mineral hosts an incommensurate helical+cycloidal state, an idle-spin state, and a multiple-q phase which is the magnetic analog of misfit crystal structures. The antiferromagnetic order on the central leg is reentrant. The high tunability of the magnetism in antlerite makes it a particularly promising platform for pursuing exotic magnetic order.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
9 More
  • Received 6 July 2022
  • Revised 6 November 2022
  • Accepted 9 November 2022

DOI:https://doi.org/10.1103/PhysRevB.106.174431

©2022 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

Anton A. Kulbakov1, Elaheh Sadrollahi1, Florian Rasch1, Maxim Avdeev2,3, Sebastian Gaß4, Laura Teresa Corredor Bohorquez4, Anja U. B. Wolter4,5, Manuel Feig6, Roman Gumeniuk6, Hagen Poddig7, Markus Stötzer8, F. Jochen Litterst9, Inés Puente-Orench10,11, Andrew Wildes11, Eugen Weschke12, Jochen Geck1,5, Dmytro S. Inosov1,5,*, and Darren C. Peets1,†

  • 1Institut für Festkörper- und Materialphysik, Technische Universität Dresden, 01069 Dresden, Germany
  • 2Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia
  • 3School of Chemistry, The University of Sydney, Sydney 2006, Australia
  • 4Institute for Solid State Research, Leibniz IFW Dresden, 01069 Dresden, Germany
  • 5Würzburg-Dresden Cluster of Excellence on Complexity and Topology in Quantum Matter – ct.qmat, Technische Universität Dresden, 01069 Dresden, Germany
  • 6Institut für Experimentelle Physik, TU Bergakademie Freiberg, 09596 Freiberg, Germany
  • 7Anorganische Chemie II, Technische Universität Dresden, 01069 Dresden, Germany
  • 8Anorganische Chemie I, Technische Universität Dresden, 01069 Dresden, Germany
  • 9Institut für Physik der Kondensierten Materie, Technische Universität Braunschweig, 38106 Braunschweig, Germany
  • 10Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
  • 11Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, CEDEX 9, 38042 Grenoble, France
  • 12Helmholtz-Zentrum Berlin für Materialien und Energie, BESSY II, 12489 Berlin, Germany

  • *dmytro.inosov@tu-dresden.de
  • darren.peets@tu-dresden.de

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 106, Iss. 17 — 1 November 2022

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×