Fast Domain Wall Motion Governed by Topology and Œrsted Fields in Cylindrical Magnetic Nanowires

M. Schöbitz, A. De Riz, S. Martin, S. Bochmann, C. Thirion, J. Vogel, M. Foerster, L. Aballe, T. O. Menteş, A. Locatelli, F. Genuzio, S. Le-Denmat, L. Cagnon, J. C. Toussaint, D. Gusakova, J. Bachmann, and O. Fruchart
Phys. Rev. Lett. 123, 217201 – Published 21 November 2019; Erratum Phys. Rev. Lett. 125, 249901 (2020)
PDFHTMLExport Citation

Abstract

While the usual approach to tailor the behavior of condensed matter and nanosized systems is the choice of material or finite-size or interfacial effects, topology alone may be the key. In the context of the motion of magnetic domain walls (DWs), known to suffer from dynamic instabilities with low mobilities, we report unprecedented velocities >600m/s for DWs driven by spin-transfer torques in cylindrical nanowires made of a standard ferromagnetic material. The reason is the robust stabilization of a DW type with a specific topology by the Œrsted field associated with the current. This opens the route to the realization of predicted new physics, such as the strong coupling of DWs with spin waves above >600m/s.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 9 July 2019
  • Corrected 26 August 2020

DOI:https://doi.org/10.1103/PhysRevLett.123.217201

© 2019 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Corrections

26 August 2020

Correction: A missing statement of support has been inserted in the Acknowledgments.

Erratum

Erratum: Fast Domain Wall Motion Governed by Topology and Œrsted Fields in Cylindrical Magnetic Nanowires [Phys. Rev. Lett. 123, 217201 (2019)]

M. Schöbitz, A. De Riz, S. Martin, S. Bochmann, C. Thirion, J. Vogel, M. Foerster, L. Aballe, T. O. Menteş, A. Locatelli, F. Genuzio, S. Le-Denmat, L. Cagnon, J. C. Toussaint, D. Gusakova, J. Bachmann, and O. Fruchart
Phys. Rev. Lett. 125, 249901 (2020)

Authors & Affiliations

M. Schöbitz1,2,3,*, A. De Riz1, S. Martin1,3, S. Bochmann2, C. Thirion3, J. Vogel3, M. Foerster4, L. Aballe4, T. O. Menteş5, A. Locatelli5, F. Genuzio5, S. Le-Denmat3, L. Cagnon3, J. C. Toussaint3, D. Gusakova1, J. Bachmann2,6, and O. Fruchart1,†

  • 1Univ. Grenoble Alpes, CNRS, CEA, Spintec, 38054 Grenoble, France
  • 2Friedrich-Alexander-Universität Erlangen-Nürnberg, Inorganic Chemistry, 91058 Erlangen, Germany
  • 3Univ. Grenoble Alpes, CNRS, Institut Néel, 38042 Grenoble, France
  • 4Alba Synchrotron Light Facility, CELLS, 08290 Barcelona, Spain
  • 5Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, 34149 Trieste, Italy
  • 6Institute of Chemistry, Saint Petersburg State University, St. Petersburg 198504, Russia

  • *Corresponding author. michael.schobitz@cea.fr
  • Corresponding author. olivier.fruchart@cea.fr

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 123, Iss. 21 — 22 November 2019

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×