Download citation
Download citation
link to html
The yeast Saccharomycopsis fibuligera produces a glucoamylase which belongs to sequence family 15 of glycosyl hydrolases. The structure of the non-glycosyl­ated recombinant enzyme has been determined by molecular replacement and refined against 1.7 Å resolution synchrotron data to an R factor of 14.6%. This is the first report of the three-dimensional structure of a yeast family 15 glucoamylase. The refinement from the initial molecular-replacement model was not straightforward. It involved the use of an unrestrained automated refinement procedure (uARP) in combination with the maximum-likelihood refinement program REFMAC. The enzyme consists of 492 amino-acid residues and has 14 α-helices, 12 of which form an (α/α)6 barrel. It contains a single catalytic domain but no starch-binding domain. The fold of the molecule and the active site are compared to the known structure of the catalytic domain of a fungal family 15 glucoamylase and are shown to be closely similar. The active- and specificity-site residues are especially highly conserved. The model of the acarbose inhibitor from the analysis of the fungal enzyme fits tightly into the present structure. The active-site topology is a pocket and hydrolysis proceeds with inversion of the configuration at the anomeric carbon. The enzyme acts as an exo-glycosyl hydrolase. There is a Tris [2-amino-2-(hydroxymethyl)-1,3-propanediol] molecule acting as an inhibitor in the active-site pocket.
Follow Acta Cryst. D
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds