Download citation
Download citation
link to html
In the title compound, C19H18NO2+. C7H7SO3, the cation is almost planar and the benzene ring of the anion makes dihedral angles of 59.17 (9) and 60.59 (10)° with the mean planes through the quinolinium and benzene ring of the cation, respectively. The cations and anions are packed as alternate layers along the b axis. These layers are inter­connected through O—H...O and C—H...O inter­actions to form a three-dimensional network. The structure is stabilized by these inter­actions and C—H...π inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805028643/wn6375sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805028643/wn6375Isup2.hkl
Contains datablock I

CCDC reference: 287745

Key indicators

  • Single-crystal X-ray study
  • T = 273 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.041
  • wR factor = 0.107
  • Data-to-parameter ratio = 13.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT230_ALERT_2_C Hirshfeld Test Diff for N1 - C20 .. 5.63 su PLAT230_ALERT_2_C Hirshfeld Test Diff for C15 - C16 .. 6.33 su PLAT230_ALERT_2_C Hirshfeld Test Diff for C17 - C18 .. 5.38 su PLAT230_ALERT_2_C Hirshfeld Test Diff for C18 - C19 .. 6.91 su PLAT230_ALERT_2_C Hirshfeld Test Diff for C5 - C6 .. 5.51 su PLAT412_ALERT_2_C Short Intra XH3 .. XHn H15A .. H26A .. 1.80 Ang.
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 7 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 6 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

The search for new organic materials that exhibit large molecular second-order optical nonlinearities is of considerable interest because of their wide range of potential applications, such as in the frequency doubling of lasers and optical data storage applications (Chemla & Zyss, 1987; Marder et al., 1991; Usman et al., 2000; Umezawa et al., 2002; Feng et al., 2005; Ye et al., 2005). Some organic materials are transparent in the visible region, which is good for nonlinear optical (NLO) materials compared with inorganic crystals [what exactly is being compared here?] (Chemla & Zyss, 1987; Chia et al., 1995; Zhengdong et al., 1997). An organic crystal with delocalized π-electrons usually displays a large NLO response (Prasad & William, 1991). Most of these crystals are composed of aromatic molecules that are substituted with π-electron donors and acceptors, which exhibit intramolecular charge transfer. One generally successful and popular approach to obtaining NLO materials is to find a substance that crystallizes in a non-centrosymmetric space group. Oudar & LePerson (1975) have also reported the effect of conjugation length, using stilbene instead of a benzene π-system. In our continuing research on NLO materials (Rahman et al., 2003; Jindawong et al., 2005; Chantrapromma et al., 2005), we expected that the two rings of quinoline, with the ethylenic CC lying in the same molecular plane, would change the molecular packing from centrosymmetric, as in our previous report (Rahman et al., 2003), to non-centrosymmetric. For this reason, the title compound, (I), was designed and synthesized. The X-ray study of (I) was carried out in order to obtain detailed information on its crystal structure.

Compound (I) is found to crystallize in the centrosymmetric space group P21/n and, therefore, has no second-order nonlinear optical properties. The molecular structure of (I) is illustrated in Fig. 1, and selected bond distances and angles are given in Table 1. The asymmetric unit of (I) consists of a C19H18NO2+ cation and a C7H7SO3 anion. The quinolinium ring system [C16–C24/N1] is essentially planar, with a maximum deviation of 0.029 (2) Å for atom N1. The H atoms attached to C14 and C15 are trans to each other; thus the cation exists in an E configuration [the C13—C14—C15—C16 torsion angle is −178.1 (2)°]. The bond distances and angles (Table 1) in both the cation and the anion have normal values (Allen et al., 1987) and are comparable to those in a related structure (Rahman et al., 2003). The cation is almost planar, the dihedral angle between the benzene and quinolinium rings being 2.59 (9)°. The methoxy substituent deviates slightly from the plane of the benzene ring, with torsion angles of 7.5 (3)° for C25—O4—C10—C9 and 177.0 (2)° for C8—C9—C10—O4. The benzene ring in the 4-methylbenzenesulfonate anion makes dihedral angles of 60.59 (10)° with the benzene ring of the cation and 59.17 (9)° with the quinolinium ring system.

In the crystal structure, atoms O2 and O3 of the anion are involved in weak C—H···O interactions, while atom O1 is involved in O—H···O hydrogen bonds (Table 2). The molecules form alternate layers of cations and anions along the b axis. These layers are interconnected through O—H···O hydrogen bonds and weak C—H···O interactions to form a three-dimensional network (Fig. 2 and Table 2). The crystal structure is further stabilized by C—H···π interactions involving the centroid, Cg1, of the benzene ring (C8–C13) of the cation (Table 2).

Experimental top

2-[(4-Methoxy-3-hydroxyphenyl)ethenyl]-N-methylquinolinium iodide (compound A) was synthesized from a mixture (1:1:1 molar ratio) of N-2-dimethylquinolinium iodide (1.98 g, 6.94 mmol), isovanillin (1.06 g, 6.94 mmol) and piperidine (0.60 g, 7.09 mmol) in methanol under reflux for 2 h in a nitrogen atmosphere. The solid that formed was filtered, washed with diethyl ether and recrystallized from methanol to give red–brown crystals of compound A (2.00 g, 68%, m.p. 491–493 K). The title compound was synthesized by mixing compound A (0.30 g, 0.72 mmol) in hot methanol (50 ml) and a solution of silver(I) p-toluenesulfonate (compound B) (0.20 g, 0.72 mmol) in hot methanol (30 ml), in a manner similar to that previously reported (Rahman et al., 2003). The mixing immediately yielded a yellow solid of silver iodide. After stirring the mixture for 30 min, the precipitate of silver iodide was removed and the resulting solution was evaporated to yield an orange solid. Colorless single crystals of (I) suitable for X-ray data collection were obtained by recrystallization from methanol and dichloromethane (1:1) after several days at ambient temperature (m.p. 526–528 K).

Refinement top

H atoms were placed in calculated positions, with an O—H distance of 0.82 Å and C—H distances in the range 0.93–0.96 Å. The Uiso(H) values were constrained to be 1.5Ueq of the carrier atom for hydroxyl and methyl H atoms, and 1.2Ueq(C) for the remaining H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing 50% probability displacement ellipsoids and the atomic numbering.
[Figure 2] Fig. 2. The crystal packing of (I), viewed down the a axis. Hydrogen bonds are shown as dashed lines.
2-[(E)-2-(3-hydroxy-4-methoxyphenyl)ethenyl]-1-methylquinolinium 4-methylbenzenesulfonate top
Crystal data top
C19H18NO2+·C7H7O3SF(000) = 976
Mr = 463.54Dx = 1.386 Mg m3
Monoclinic, P21/nMelting point: 526-528 K K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 7.3382 (3) ÅCell parameters from 3913 reflections
b = 21.8714 (7) Åθ = 1.7–25.0°
c = 14.0755 (4) ŵ = 0.19 mm1
β = 100.464 (1)°T = 273 K
V = 2221.50 (13) Å3Needle, colorless
Z = 40.50 × 0.24 × 0.10 mm
Data collection top
Bruker SMART APEX2 CCD area-detector
diffractometer
3913 independent reflections
Radiation source: fine-focus sealed tube3138 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 8.33 pixels mm-1θmax = 25.0°, θmin = 1.7°
ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 2626
Tmin = 0.948, Tmax = 0.982l = 1616
17716 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0408P)2 + 1.1272P]
where P = (Fo2 + 2Fc2)/3
3913 reflections(Δ/σ)max < 0.001
301 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C19H18NO2+·C7H7O3SV = 2221.50 (13) Å3
Mr = 463.54Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.3382 (3) ŵ = 0.19 mm1
b = 21.8714 (7) ÅT = 273 K
c = 14.0755 (4) Å0.50 × 0.24 × 0.10 mm
β = 100.464 (1)°
Data collection top
Bruker SMART APEX2 CCD area-detector
diffractometer
3913 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3138 reflections with I > 2σ(I)
Tmin = 0.948, Tmax = 0.982Rint = 0.025
17716 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.04Δρmax = 0.29 e Å3
3913 reflectionsΔρmin = 0.24 e Å3
301 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.21121 (8)0.16748 (2)0.86833 (4)0.04970 (17)
O10.3052 (2)0.12978 (6)0.80647 (11)0.0569 (4)
O20.3161 (2)0.22217 (7)0.89906 (12)0.0657 (5)
O30.1547 (3)0.13322 (8)0.94541 (12)0.0771 (5)
O40.3507 (2)0.08651 (7)0.67204 (11)0.0578 (4)
O50.2446 (3)0.01927 (7)0.72949 (10)0.0642 (5)
H5A0.26430.05290.75510.096*
N10.1834 (2)0.05830 (8)1.23275 (12)0.0456 (4)
C10.1636 (3)0.21975 (10)0.63561 (16)0.0562 (6)
H1B0.16310.22810.57090.067*
C20.0005 (3)0.20294 (10)0.69551 (15)0.0499 (5)
H2B0.10790.19940.67050.060*
C30.0025 (3)0.19130 (8)0.79222 (14)0.0428 (5)
C40.1584 (3)0.19784 (10)0.82875 (16)0.0526 (5)
H4A0.15750.19130.89410.063*
C50.3219 (3)0.21418 (10)0.76789 (19)0.0590 (6)
H5B0.42990.21840.79310.071*
C60.3270 (3)0.22436 (9)0.67048 (17)0.0541 (6)
C70.5062 (4)0.23937 (13)0.6036 (2)0.0832 (9)
H7A0.48180.26650.55380.125*
H7B0.58940.25870.63960.125*
H7C0.56140.20240.57490.125*
C80.3722 (3)0.11875 (9)0.93061 (16)0.0489 (5)
H8A0.40470.15010.97520.059*
C90.3810 (3)0.12874 (9)0.83454 (16)0.0492 (5)
H9A0.41540.16700.81490.059*
C100.3389 (3)0.08230 (9)0.76733 (14)0.0434 (5)
C110.2835 (3)0.02523 (9)0.79783 (14)0.0435 (5)
C120.2707 (3)0.01618 (9)0.89273 (14)0.0422 (5)
H12A0.23130.02150.91180.051*
C130.3158 (3)0.06265 (9)0.96163 (14)0.0422 (5)
C140.3060 (3)0.05346 (10)1.06274 (15)0.0477 (5)
H14A0.35100.08481.10530.057*
C150.2390 (3)0.00457 (10)1.09990 (15)0.0512 (5)
H15A0.19040.02641.05760.061*
C160.2358 (3)0.00430 (10)1.20185 (15)0.0488 (5)
C170.2878 (4)0.04360 (11)1.27052 (16)0.0631 (7)
H17A0.32430.08141.25020.076*
C180.2838 (4)0.03394 (11)1.36477 (17)0.0677 (7)
H18A0.32020.06521.40890.081*
C190.2262 (3)0.02209 (10)1.39784 (16)0.0547 (6)
C200.1719 (3)0.06925 (10)1.33037 (14)0.0458 (5)
C210.1112 (3)0.12459 (11)1.36057 (16)0.0570 (6)
H21A0.07320.15551.31610.068*
C220.1074 (4)0.13341 (12)1.45562 (17)0.0656 (7)
H22A0.06680.17081.47540.079*
C230.1623 (4)0.08839 (12)1.52421 (17)0.0695 (7)
H23A0.15960.09601.58900.083*
C240.2199 (4)0.03323 (12)1.49671 (16)0.0669 (7)
H24A0.25530.00281.54250.080*
C250.3891 (4)0.14492 (11)0.63538 (18)0.0652 (7)
H25A0.38750.14190.56720.098*
H25D0.29670.17370.64700.098*
H25B0.50910.15850.66730.098*
C260.1381 (3)0.10910 (10)1.16524 (15)0.0513 (5)
H26A0.19080.10171.10870.077*
H26B0.18790.14631.19550.077*
H26C0.00600.11271.14720.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0637 (4)0.0393 (3)0.0457 (3)0.0077 (2)0.0090 (2)0.0040 (2)
O10.0649 (10)0.0399 (8)0.0673 (10)0.0087 (7)0.0163 (8)0.0031 (7)
O20.0725 (11)0.0487 (9)0.0682 (10)0.0061 (8)0.0078 (8)0.0121 (8)
O30.0945 (14)0.0815 (12)0.0587 (10)0.0195 (10)0.0230 (9)0.0306 (9)
O40.0816 (11)0.0435 (8)0.0511 (9)0.0038 (8)0.0199 (8)0.0106 (7)
O50.1076 (14)0.0405 (8)0.0433 (8)0.0049 (8)0.0108 (8)0.0011 (7)
N10.0446 (10)0.0454 (10)0.0455 (10)0.0033 (8)0.0046 (8)0.0067 (8)
C10.0685 (16)0.0525 (13)0.0463 (12)0.0013 (11)0.0066 (11)0.0006 (10)
C20.0559 (14)0.0504 (13)0.0458 (12)0.0019 (10)0.0156 (10)0.0001 (10)
C30.0561 (13)0.0300 (10)0.0434 (11)0.0017 (9)0.0123 (9)0.0010 (8)
C40.0643 (15)0.0459 (12)0.0512 (12)0.0047 (11)0.0198 (11)0.0012 (10)
C50.0529 (14)0.0462 (13)0.0823 (17)0.0037 (11)0.0243 (12)0.0054 (12)
C60.0576 (14)0.0367 (11)0.0657 (15)0.0033 (10)0.0048 (11)0.0045 (10)
C70.0632 (17)0.0733 (18)0.103 (2)0.0011 (14)0.0120 (15)0.0069 (16)
C80.0507 (13)0.0396 (11)0.0553 (13)0.0047 (9)0.0068 (10)0.0083 (9)
C90.0493 (13)0.0351 (11)0.0643 (14)0.0034 (9)0.0130 (10)0.0049 (10)
C100.0439 (11)0.0410 (11)0.0457 (11)0.0069 (9)0.0094 (9)0.0063 (9)
C110.0501 (12)0.0347 (10)0.0444 (11)0.0029 (9)0.0056 (9)0.0006 (9)
C120.0462 (12)0.0335 (10)0.0462 (11)0.0011 (9)0.0066 (9)0.0043 (8)
C130.0387 (11)0.0418 (11)0.0450 (11)0.0036 (9)0.0042 (9)0.0000 (9)
C140.0497 (13)0.0467 (12)0.0451 (11)0.0043 (10)0.0046 (9)0.0056 (9)
C150.0617 (14)0.0491 (13)0.0405 (11)0.0024 (10)0.0033 (10)0.0014 (10)
C160.0469 (12)0.0449 (12)0.0522 (12)0.0043 (10)0.0027 (10)0.0025 (10)
C170.0925 (19)0.0500 (13)0.0447 (13)0.0060 (13)0.0066 (12)0.0057 (10)
C180.093 (2)0.0544 (15)0.0511 (14)0.0014 (13)0.0018 (13)0.0152 (11)
C190.0591 (14)0.0507 (13)0.0534 (13)0.0073 (11)0.0080 (11)0.0012 (10)
C200.0429 (12)0.0566 (13)0.0369 (11)0.0099 (10)0.0047 (9)0.0034 (9)
C210.0611 (15)0.0572 (14)0.0524 (13)0.0008 (11)0.0097 (11)0.0034 (11)
C220.0758 (17)0.0663 (16)0.0558 (14)0.0016 (13)0.0146 (12)0.0074 (12)
C230.095 (2)0.0736 (17)0.0423 (13)0.0036 (15)0.0177 (13)0.0060 (12)
C240.0874 (19)0.0693 (17)0.0427 (13)0.0070 (14)0.0084 (12)0.0091 (11)
C250.0788 (18)0.0528 (14)0.0656 (15)0.0022 (12)0.0174 (13)0.0221 (12)
C260.0600 (14)0.0499 (13)0.0435 (11)0.0047 (10)0.0081 (10)0.0068 (10)
Geometric parameters (Å, º) top
S1—O31.4402 (17)C10—C111.404 (3)
S1—O21.4453 (17)C11—C121.371 (3)
S1—O11.4600 (15)C12—C131.402 (3)
S1—C31.780 (2)C12—H12A0.9300
O4—C101.363 (2)C13—C141.452 (3)
O4—C251.425 (3)C14—C151.324 (3)
O5—C111.362 (2)C14—H14A0.9300
O5—H5A0.8200C15—C161.452 (3)
N1—C161.339 (3)C15—H15A0.9300
N1—C201.412 (3)C16—C171.429 (3)
N1—C261.461 (3)C17—C181.349 (3)
C1—C61.379 (3)C17—H17A0.9300
C1—C21.383 (3)C18—C191.403 (3)
C1—H1B0.9300C18—H18A0.9300
C2—C31.381 (3)C19—C201.410 (3)
C2—H2B0.9300C19—C241.422 (3)
C3—C41.378 (3)C20—C211.383 (3)
C4—C51.388 (3)C21—C221.357 (3)
C4—H4A0.9300C21—H21A0.9300
C5—C61.383 (3)C22—C231.387 (3)
C5—H5B0.9300C22—H22A0.9300
C6—C71.507 (3)C23—C241.358 (4)
C7—H7A0.9600C23—H23A0.9300
C7—H7B0.9600C24—H24A0.9300
C7—H7C0.9600C25—H25A0.9600
C8—C91.383 (3)C25—H25D0.9600
C8—C131.391 (3)C25—H25B0.9600
C8—H8A0.9300C26—H26A0.9600
C9—C101.384 (3)C26—H26B0.9600
C9—H9A0.9300C26—H26C0.9600
O3—S1—O2114.56 (11)C13—C12—H12A119.3
O3—S1—O1112.80 (10)C8—C13—C12117.95 (18)
O2—S1—O1111.25 (10)C8—C13—C14120.03 (18)
O3—S1—C3105.76 (10)C12—C13—C14122.02 (18)
O2—S1—C3106.91 (9)C15—C14—C13125.9 (2)
O1—S1—C3104.74 (9)C15—C14—H14A117.0
C10—O4—C25117.98 (17)C13—C14—H14A117.0
C11—O5—H5A109.5C14—C15—C16124.9 (2)
C16—N1—C20122.49 (17)C14—C15—H15A117.6
C16—N1—C26120.29 (17)C16—C15—H15A117.6
C20—N1—C26117.21 (17)N1—C16—C17118.9 (2)
C6—C1—C2121.0 (2)N1—C16—C15119.73 (19)
C6—C1—H1B119.5C17—C16—C15121.3 (2)
C2—C1—H1B119.5C18—C17—C16120.0 (2)
C3—C2—C1120.5 (2)C18—C17—H17A120.0
C3—C2—H2B119.8C16—C17—H17A120.0
C1—C2—H2B119.8C17—C18—C19121.6 (2)
C4—C3—C2119.2 (2)C17—C18—H18A119.2
C4—C3—S1120.51 (16)C19—C18—H18A119.2
C2—C3—S1120.34 (17)C18—C19—C20118.7 (2)
C3—C4—C5119.9 (2)C18—C19—C24122.7 (2)
C3—C4—H4A120.0C20—C19—C24118.6 (2)
C5—C4—H4A120.0C21—C20—C19120.04 (19)
C6—C5—C4121.2 (2)C21—C20—N1121.80 (19)
C6—C5—H5B119.4C19—C20—N1118.1 (2)
C4—C5—H5B119.4C22—C21—C20119.5 (2)
C1—C6—C5118.2 (2)C22—C21—H21A120.2
C1—C6—C7120.7 (2)C20—C21—H21A120.2
C5—C6—C7121.2 (2)C21—C22—C23122.0 (2)
C6—C7—H7A109.5C21—C22—H22A119.0
C6—C7—H7B109.5C23—C22—H22A119.0
H7A—C7—H7B109.5C24—C23—C22119.9 (2)
C6—C7—H7C109.5C24—C23—H23A120.0
H7A—C7—H7C109.5C22—C23—H23A120.0
H7B—C7—H7C109.5C23—C24—C19119.9 (2)
C9—C8—C13121.06 (19)C23—C24—H24A120.1
C9—C8—H8A119.5C19—C24—H24A120.1
C13—C8—H8A119.5O4—C25—H25A109.5
C8—C9—C10120.55 (19)O4—C25—H25D109.5
C8—C9—H9A119.7H25A—C25—H25D109.5
C10—C9—H9A119.7O4—C25—H25B109.5
O4—C10—C9125.23 (18)H25A—C25—H25B109.5
O4—C10—C11115.78 (18)H25D—C25—H25B109.5
C9—C10—C11118.98 (19)N1—C26—H26A109.5
O5—C11—C12122.85 (18)N1—C26—H26B109.5
O5—C11—C10117.05 (18)H26A—C26—H26B109.5
C12—C11—C10120.10 (18)N1—C26—H26C109.5
C11—C12—C13121.34 (18)H26A—C26—H26C109.5
C11—C12—H12A119.3H26B—C26—H26C109.5
C6—C1—C2—C31.0 (3)C11—C12—C13—C14178.90 (19)
C1—C2—C3—C41.3 (3)C8—C13—C14—C15173.5 (2)
C1—C2—C3—S1178.13 (16)C12—C13—C14—C156.9 (3)
O3—S1—C3—C425.5 (2)C13—C14—C15—C16178.1 (2)
O2—S1—C3—C497.00 (18)C20—N1—C16—C172.0 (3)
O1—S1—C3—C4144.86 (17)C26—N1—C16—C17177.0 (2)
O3—S1—C3—C2153.92 (17)C20—N1—C16—C15178.03 (18)
O2—S1—C3—C283.59 (18)C26—N1—C16—C152.9 (3)
O1—S1—C3—C234.55 (19)C14—C15—C16—N1172.7 (2)
C2—C3—C4—C51.9 (3)C14—C15—C16—C177.3 (4)
S1—C3—C4—C5177.54 (16)N1—C16—C17—C180.1 (4)
C3—C4—C5—C60.2 (3)C15—C16—C17—C18179.8 (2)
C2—C1—C6—C52.6 (3)C16—C17—C18—C191.2 (4)
C2—C1—C6—C7176.7 (2)C17—C18—C19—C200.2 (4)
C4—C5—C6—C12.0 (3)C17—C18—C19—C24179.7 (3)
C4—C5—C6—C7177.3 (2)C18—C19—C20—C21178.8 (2)
C13—C8—C9—C102.0 (3)C24—C19—C20—C211.0 (3)
C25—O4—C10—C97.5 (3)C18—C19—C20—N11.8 (3)
C25—O4—C10—C11174.14 (19)C24—C19—C20—N1178.3 (2)
C8—C9—C10—O4177.0 (2)C16—N1—C20—C21177.6 (2)
C8—C9—C10—C111.3 (3)C26—N1—C20—C213.3 (3)
O4—C10—C11—O51.1 (3)C16—N1—C20—C193.0 (3)
C9—C10—C11—O5179.60 (18)C26—N1—C20—C19176.05 (19)
O4—C10—C11—C12178.86 (18)C19—C20—C21—C221.1 (3)
C9—C10—C11—C120.4 (3)N1—C20—C21—C22178.2 (2)
O5—C11—C12—C13178.58 (19)C20—C21—C22—C230.2 (4)
C10—C11—C12—C131.4 (3)C21—C22—C23—C240.8 (4)
C9—C8—C13—C121.0 (3)C22—C23—C24—C190.8 (4)
C9—C8—C13—C14179.41 (19)C18—C19—C24—C23179.8 (3)
C11—C12—C13—C80.7 (3)C20—C19—C24—C230.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O10.821.832.653 (2)177
C5—H5B···O2i0.932.593.504 (3)167
C12—H12A···O30.932.573.490 (3)171
C23—H23A···O5ii0.932.583.219 (3)126
C25—H25D···O2iii0.962.473.269 (3)141
C26—H26A···O30.962.373.163 (3)140
C26—H26C···Cg1iv0.962.583.458 (2)153
Symmetry codes: (i) x1, y, z; (ii) x, y, z+1; (iii) x+1/2, y1/2, z+3/2; (iv) x, y, z+2.

Experimental details

Crystal data
Chemical formulaC19H18NO2+·C7H7O3S
Mr463.54
Crystal system, space groupMonoclinic, P21/n
Temperature (K)273
a, b, c (Å)7.3382 (3), 21.8714 (7), 14.0755 (4)
β (°) 100.464 (1)
V3)2221.50 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.50 × 0.24 × 0.10
Data collection
DiffractometerBruker SMART APEX2 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.948, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
17716, 3913, 3138
Rint0.025
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.107, 1.04
No. of reflections3913
No. of parameters301
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.24

Computer programs: APEX2 (Bruker, 2005), APEX2, SAINT (Bruker, 2005), SHELXTL (Sheldrick, 1998), SHELXTL and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
S1—O31.4402 (17)O5—C111.362 (2)
S1—O21.4453 (17)N1—C161.339 (3)
S1—O11.4600 (15)N1—C201.412 (3)
S1—C31.780 (2)N1—C261.461 (3)
O4—C101.363 (2)C14—C151.324 (3)
C12—C13—C14122.02 (18)N1—C16—C15119.73 (19)
C25—O4—C10—C97.5 (3)O4—C10—C11—C12178.86 (18)
C25—O4—C10—C11174.14 (19)C13—C14—C15—C16178.1 (2)
C8—C9—C10—O4177.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O10.821.83342.653 (2)177
C5—H5B···O2i0.932.59133.504 (3)167
C12—H12A···O30.932.57043.490 (3)171
C23—H23A···O5ii0.932.58223.219 (3)126
C25—H25D···O2iii0.962.46933.269 (3)141
C26—H26A···O30.962.36793.163 (3)140
C26—H26C···Cg1iv0.962.57613.458 (2)153
Symmetry codes: (i) x1, y, z; (ii) x, y, z+1; (iii) x+1/2, y1/2, z+3/2; (iv) x, y, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds