Download citation
Download citation
link to html
The title compound, [Cu(C10H8N2)3](BF4)2, shows the expected Jahn–Teller distortion at the pseudo-octa­hedrally coordinated CuII atom. Each CuII complex cation is surrounded by six BF4 anions and each anion by three cations with weak C—H...F hydrogen bonds between them. One of the two BF4 anions exhibits a rotational disorder (0.6:0.4) around one of the B—F bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807028863/is2177sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807028863/is2177Isup2.hkl
Contains datablock I

CCDC reference: 654782

Key indicators

  • Single-crystal X-ray study
  • T = 203 K
  • Mean [sigma](C-C) = 0.003 Å
  • Disorder in solvent or counterion
  • R factor = 0.036
  • wR factor = 0.088
  • Data-to-parameter ratio = 13.6

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 2.28 PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 100 Deg. PLAT180_ALERT_3_C Check Cell Rounding: # of Values Ending with 0 = 4 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for B2 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for B1 PLAT302_ALERT_4_C Anion/Solvent Disorder ......................... 23.00 Perc.
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Metal complexes with three (modified) 2,2'-bipyridine ligands are of continous interest (Janiak et al., 1999; Wu et al., 2003; Yang et al., 2004a,b). Tris(2,2'-bipyridine)copper structure are known with the anions tris(oxalato)chromate(III) (Juric et al., 2006), polyoxovanadate (Dong et al., 2006), polyoxotungstate (Niu et al., 2004), bis(bis(2-thioxo-1,3-dithiole-4,5-dithiolato)- nickelate(II) (Faulmann et al., 1998), tetraphenylborate (Murphy et al., 2006) and perchlorate (Anderson, 1972; Liu et al., 1991; Majumdar et al., 1998; Pavlishchuk et al., 1999). The closely related tris(5,5'-dimethyl-2,2'-bipyridine)copper(II) complexes have been reported as the hexafluorophosphate (Perkins et al., 2006) and tetrafluoroborate salt (van Albada et al., 2004).

The asymmetric unit of the title complex is shown in Fig. 1. The cation-anion packing view projected onto the bc plane is given in Fig. 2. Bond lengths and angles in the title complex (Table 1) are as expected from the related [Cu(2,2'-bipy)3]-compounds with other anions. The crystal packing is primarily governed by the electrostatic cation-anion interaction and separation. Some weak C—H···F interactions from the bipyridine to the BF4-anion can be discerned (Althoff et al., 2006). No relevant ππ or C—H···π interactions were found (Janiak, 2000; Nishio, 2004).

Noteworthy, the long Cu···N5 distortion apparently leads to a sizable tilt angle between the pyridyl ring planes of N5 and N6 of 32.1 (1)°, while the other two ring planes show tilt angles of 14.5 (1)° (N1,N2) or 11.0 (1)° (N3,N4).

Related literature top

For related literature, see: Althoff et al. (2006); Anderson (1972); Dong et al. (2006); Faulmann et al. (1998); Janiak et al. (1999); Janiak (2000); Juric et al. (2006); Liu et al. (1991); Majumdar et al. (1998); Murphy et al. (2006); Nishio (2004); Niu et al. (2004); Pavlishchuk et al. (1999); Perkins et al. (2006); van Albada et al. (2004); Yang et al. (2004a,b); Wu et al. (2003).

Experimental top

A methanol solution (30 ml) of Cu(BF4)2.6H2O (5 mmol, 1.726 g) was mixed with L-glutamic acid (5 mmol, 0.781 g) and the mixture was warmed on a water bath for 5 minutes. The resulting blue solution was added to a methanol solution (10 ml) of 2,2'-bipyridine (5 mmol, 0.780 g). The dark blue solution was stirred for 15 min. Blue crystals were obtained by slow evaporation of the mother liquor after two days. The crystals were analyzed as the title compound. For a direct preparation an aqueous solution (10 ml) of Cu(BF4)2.6H2O (2 mmol, 0.690 g) was mixed with a methanol solution (5 ml) of 2,2'-bipyridine (6 mmol, 0.937 g) and the mixture was refluxed for approximately 2 h. After two days at room temperature long light blue crystals were obtained (yield 68%). Analysis calculated for C30H24CuB2F8N6 (705.72): C 51.06, H 3.43, N 11.91%; found: C 51.30, H, 3.15, N 11.73%.

Refinement top

H atoms were positioned geometrically (C—H = 0.94 Å) and refined using a riding model (AFIX 43), with Uiso(H) = 1.2Ueq(C). The disordered F atoms on B2 were refined anisotropically by assigning them to different PART numbers of a disordered group. The atoms of PART 1 (F6A, F7A and F8) were found to have an occupation factor (sof) of 0.4. The atoms of PART 2 (F6B, F7B, F8B) had an occupation factor of 0.6. These occupation factors were initially found upon refinement and then fixed in subsequent refinement cycles.

Structure description top

Metal complexes with three (modified) 2,2'-bipyridine ligands are of continous interest (Janiak et al., 1999; Wu et al., 2003; Yang et al., 2004a,b). Tris(2,2'-bipyridine)copper structure are known with the anions tris(oxalato)chromate(III) (Juric et al., 2006), polyoxovanadate (Dong et al., 2006), polyoxotungstate (Niu et al., 2004), bis(bis(2-thioxo-1,3-dithiole-4,5-dithiolato)- nickelate(II) (Faulmann et al., 1998), tetraphenylborate (Murphy et al., 2006) and perchlorate (Anderson, 1972; Liu et al., 1991; Majumdar et al., 1998; Pavlishchuk et al., 1999). The closely related tris(5,5'-dimethyl-2,2'-bipyridine)copper(II) complexes have been reported as the hexafluorophosphate (Perkins et al., 2006) and tetrafluoroborate salt (van Albada et al., 2004).

The asymmetric unit of the title complex is shown in Fig. 1. The cation-anion packing view projected onto the bc plane is given in Fig. 2. Bond lengths and angles in the title complex (Table 1) are as expected from the related [Cu(2,2'-bipy)3]-compounds with other anions. The crystal packing is primarily governed by the electrostatic cation-anion interaction and separation. Some weak C—H···F interactions from the bipyridine to the BF4-anion can be discerned (Althoff et al., 2006). No relevant ππ or C—H···π interactions were found (Janiak, 2000; Nishio, 2004).

Noteworthy, the long Cu···N5 distortion apparently leads to a sizable tilt angle between the pyridyl ring planes of N5 and N6 of 32.1 (1)°, while the other two ring planes show tilt angles of 14.5 (1)° (N1,N2) or 11.0 (1)° (N3,N4).

For related literature, see: Althoff et al. (2006); Anderson (1972); Dong et al. (2006); Faulmann et al. (1998); Janiak et al. (1999); Janiak (2000); Juric et al. (2006); Liu et al. (1991); Majumdar et al. (1998); Murphy et al. (2006); Nishio (2004); Niu et al. (2004); Pavlishchuk et al. (1999); Perkins et al. (2006); van Albada et al. (2004); Yang et al. (2004a,b); Wu et al. (2003).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Crystal Impact, 2006); software used to prepare material for publication: publCIF (Westrip, 2007).

Figures top
[Figure 1] Fig. 1. : Asymmetric unit of [Cu(2,2'-bipy)3](BF4)2, also showing the rotational disorder of one BF4 anion.
[Figure 2] Fig. 2. : Crystal packing projected onto the bc plane, illustrating the cation-anion separation.
Tris(2,2'-bipyridine-κ2N,N')copper(II) bis(tetrafluoridoborate) top
Crystal data top
[Cu(C10H8N2)3](BF4)2Z = 2
Mr = 705.72F(000) = 714
Triclinic, P1Dx = 1.555 Mg m3
a = 7.8633 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.7810 (2) ÅCell parameters from 9932 reflections
c = 18.3211 (4) Åθ = 4.9–57.9°
α = 101.118 (1)°µ = 0.81 mm1
β = 90.750 (1)°T = 203 K
γ = 98.091 (1)°Needle, blue
V = 1507.54 (6) Å30.29 × 0.09 × 0.06 mm
Data collection top
Bruker APEXII CCD
diffractometer
6145 independent reflections
Radiation source: fine-focus sealed tube4809 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.081
ω scansθmax = 26.4°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.799, Tmax = 0.955k = 1313
35533 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0432P)2 + 0.2354P]
where P = (Fo2 + 2Fc2)/3
6145 reflections(Δ/σ)max = 0.001
451 parametersΔρmax = 0.68 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Cu(C10H8N2)3](BF4)2γ = 98.091 (1)°
Mr = 705.72V = 1507.54 (6) Å3
Triclinic, P1Z = 2
a = 7.8633 (2) ÅMo Kα radiation
b = 10.7810 (2) ŵ = 0.81 mm1
c = 18.3211 (4) ÅT = 203 K
α = 101.118 (1)°0.29 × 0.09 × 0.06 mm
β = 90.750 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
6145 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4809 reflections with I > 2σ(I)
Tmin = 0.799, Tmax = 0.955Rint = 0.081
35533 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.06Δρmax = 0.68 e Å3
6145 reflectionsΔρmin = 0.30 e Å3
451 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu0.49641 (3)0.26662 (2)0.259958 (10)0.02981 (9)
N10.6154 (2)0.14377 (15)0.18640 (7)0.0324 (4)
N20.6720 (2)0.39431 (15)0.22253 (7)0.0323 (4)
N30.6455 (2)0.23049 (16)0.35676 (8)0.0362 (4)
N40.3385 (2)0.12645 (15)0.29363 (8)0.0351 (4)
N50.3100 (2)0.30720 (16)0.16155 (8)0.0356 (4)
N60.3548 (2)0.39973 (15)0.31069 (7)0.0317 (4)
C10.5892 (3)0.0164 (2)0.17581 (10)0.0410 (5)
H1A0.50040.02360.20090.049*
C20.6876 (3)0.0589 (2)0.12940 (11)0.0506 (6)
H2A0.66640.14840.12330.061*
C30.8163 (3)0.0012 (3)0.09252 (12)0.0569 (7)
H3A0.88540.05070.06100.068*
C40.8438 (3)0.1303 (2)0.10199 (11)0.0507 (6)
H4A0.93160.17130.07690.061*
C50.7400 (3)0.2015 (2)0.14913 (9)0.0354 (5)
C60.7582 (3)0.3416 (2)0.16347 (9)0.0355 (5)
C70.8520 (3)0.4170 (2)0.12031 (10)0.0489 (6)
H7A0.90770.37900.07860.059*
C80.8627 (3)0.5479 (3)0.13910 (12)0.0543 (6)
H8A0.92430.60020.11000.065*
C90.7822 (3)0.6010 (2)0.20101 (12)0.0489 (6)
H9B0.79170.69030.21580.059*
C100.6867 (3)0.5218 (2)0.24154 (11)0.0397 (5)
H10A0.63070.55870.28350.048*
C110.1779 (3)0.0876 (2)0.26544 (11)0.0454 (5)
H11A0.13670.12830.22920.055*
C120.0703 (3)0.0097 (2)0.28738 (12)0.0560 (6)
H12A0.04270.03430.26710.067*
C130.1320 (4)0.0700 (2)0.33951 (13)0.0621 (7)
H13A0.06190.13700.35540.074*
C140.2974 (4)0.0314 (2)0.36820 (11)0.0552 (7)
H14A0.34130.07310.40330.066*
C150.3999 (3)0.06876 (18)0.34562 (9)0.0391 (5)
C160.5772 (3)0.12056 (19)0.37568 (9)0.0390 (5)
C170.6688 (4)0.0604 (2)0.42061 (11)0.0513 (6)
H17A0.62000.01730.43290.062*
C180.8314 (4)0.1164 (3)0.44662 (12)0.0572 (7)
H18A0.89490.07730.47710.069*
C190.9016 (3)0.2303 (2)0.42800 (11)0.0515 (6)
H19A1.01260.27010.44550.062*
C200.8033 (3)0.2841 (2)0.38278 (10)0.0436 (5)
H20A0.84990.36170.36980.052*
C210.2698 (3)0.46343 (18)0.26934 (9)0.0335 (4)
C220.1715 (3)0.5548 (2)0.30129 (11)0.0462 (5)
H22A0.11440.59910.27150.055*
C230.1587 (3)0.5800 (2)0.37805 (11)0.0517 (6)
H23A0.09220.64140.40090.062*
C240.2440 (3)0.5144 (2)0.42011 (10)0.0449 (5)
H24A0.23600.52980.47210.054*
C250.3416 (3)0.4256 (2)0.38535 (9)0.0375 (5)
H25A0.40100.38160.41450.045*
C260.2875 (3)0.5179 (2)0.14170 (10)0.0401 (5)
H26A0.27260.60260.16160.048*
C270.3104 (3)0.4783 (2)0.06585 (11)0.0462 (5)
H27A0.31220.53630.03350.055*
C280.3300 (3)0.3536 (2)0.03931 (10)0.0454 (5)
H28A0.34330.32460.01180.054*
C290.3300 (3)0.2709 (2)0.08831 (10)0.0405 (5)
H29A0.34470.18570.06950.049*
C300.2876 (2)0.42833 (19)0.18674 (9)0.0321 (4)
B10.2109 (4)0.8267 (2)0.08406 (13)0.0473 (6)
F10.3396 (2)0.77651 (16)0.04220 (9)0.0756 (5)
F20.05285 (19)0.76224 (13)0.05089 (7)0.0608 (4)
F30.21961 (19)0.95517 (12)0.08408 (7)0.0577 (4)
F40.2248 (3)0.80748 (14)0.15576 (7)0.0805 (5)
B20.3042 (3)0.2767 (2)0.57012 (12)0.0416 (6)
F50.2891 (2)0.40217 (15)0.57208 (9)0.0755 (5)
F6A0.3457 (11)0.2434 (5)0.6377 (3)0.103 (3)0.40
F7A0.4247 (8)0.2392 (6)0.5222 (4)0.097 (2)0.40
F8A0.1552 (8)0.1886 (6)0.5459 (4)0.099 (2)0.40
F6B0.4403 (5)0.2725 (4)0.6134 (2)0.0805 (12)0.60
F7B0.3161 (7)0.2142 (5)0.50027 (17)0.1027 (16)0.60
F8B0.1604 (5)0.2332 (4)0.5983 (3)0.1105 (16)0.60
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.03426 (15)0.02520 (13)0.03177 (11)0.00620 (10)0.00703 (9)0.00832 (8)
N10.0350 (10)0.0322 (9)0.0305 (6)0.0084 (7)0.0020 (6)0.0053 (6)
N20.0315 (9)0.0327 (9)0.0338 (7)0.0015 (7)0.0009 (6)0.0116 (6)
N30.0471 (11)0.0314 (9)0.0332 (7)0.0103 (8)0.0042 (7)0.0108 (6)
N40.0413 (11)0.0275 (9)0.0374 (7)0.0060 (8)0.0106 (7)0.0073 (6)
N50.0382 (10)0.0329 (9)0.0358 (7)0.0054 (8)0.0022 (7)0.0072 (6)
N60.0346 (9)0.0276 (9)0.0333 (7)0.0062 (7)0.0036 (6)0.0060 (6)
C10.0488 (14)0.0369 (12)0.0385 (9)0.0126 (10)0.0031 (9)0.0057 (8)
C20.0652 (17)0.0406 (13)0.0471 (10)0.0237 (12)0.0017 (11)0.0003 (9)
C30.0567 (16)0.0674 (18)0.0480 (11)0.0321 (14)0.0063 (11)0.0022 (11)
C40.0393 (13)0.0699 (17)0.0436 (10)0.0148 (12)0.0114 (9)0.0076 (10)
C50.0298 (11)0.0486 (12)0.0296 (7)0.0096 (9)0.0003 (7)0.0090 (8)
C60.0272 (11)0.0484 (13)0.0314 (8)0.0016 (9)0.0012 (7)0.0122 (8)
C70.0403 (13)0.0667 (16)0.0397 (9)0.0062 (12)0.0034 (9)0.0204 (10)
C80.0478 (15)0.0636 (17)0.0539 (11)0.0126 (12)0.0048 (10)0.0330 (11)
C90.0442 (14)0.0379 (12)0.0645 (12)0.0063 (11)0.0150 (11)0.0199 (10)
C100.0373 (12)0.0354 (12)0.0470 (9)0.0006 (9)0.0055 (9)0.0132 (8)
C110.0485 (14)0.0379 (12)0.0482 (10)0.0035 (11)0.0108 (10)0.0058 (9)
C120.0567 (16)0.0459 (14)0.0581 (12)0.0090 (12)0.0134 (11)0.0033 (10)
C130.076 (2)0.0440 (14)0.0608 (13)0.0149 (13)0.0203 (13)0.0121 (11)
C140.082 (2)0.0408 (13)0.0459 (10)0.0038 (13)0.0152 (11)0.0188 (9)
C150.0572 (14)0.0269 (10)0.0346 (8)0.0085 (10)0.0158 (9)0.0072 (7)
C160.0556 (15)0.0344 (11)0.0313 (8)0.0154 (10)0.0138 (8)0.0099 (7)
C170.0686 (18)0.0457 (14)0.0507 (11)0.0240 (13)0.0144 (11)0.0251 (10)
C180.0683 (19)0.0680 (17)0.0495 (11)0.0368 (15)0.0094 (11)0.0269 (11)
C190.0518 (15)0.0650 (16)0.0429 (10)0.0210 (13)0.0015 (10)0.0144 (10)
C200.0500 (15)0.0440 (13)0.0385 (9)0.0088 (11)0.0007 (9)0.0107 (8)
C210.0329 (11)0.0309 (10)0.0366 (8)0.0065 (9)0.0008 (8)0.0052 (7)
C220.0461 (14)0.0461 (13)0.0483 (10)0.0203 (11)0.0029 (9)0.0046 (9)
C230.0513 (15)0.0514 (14)0.0517 (11)0.0233 (12)0.0061 (10)0.0036 (10)
C240.0497 (14)0.0462 (13)0.0372 (9)0.0125 (11)0.0082 (9)0.0004 (9)
C250.0398 (12)0.0376 (11)0.0355 (8)0.0053 (9)0.0045 (8)0.0082 (8)
C260.0428 (13)0.0332 (11)0.0464 (9)0.0099 (10)0.0024 (9)0.0097 (8)
C270.0496 (14)0.0498 (14)0.0446 (10)0.0083 (11)0.0005 (9)0.0216 (9)
C280.0494 (14)0.0519 (14)0.0344 (8)0.0071 (11)0.0007 (9)0.0077 (9)
C290.0457 (13)0.0370 (12)0.0367 (8)0.0078 (10)0.0033 (8)0.0013 (8)
C300.0270 (11)0.0324 (11)0.0368 (8)0.0057 (8)0.0022 (7)0.0062 (7)
B10.0596 (18)0.0304 (13)0.0518 (12)0.0077 (12)0.0008 (12)0.0069 (10)
F10.0628 (11)0.0641 (11)0.0981 (11)0.0240 (9)0.0108 (8)0.0003 (8)
F20.0574 (9)0.0529 (9)0.0687 (8)0.0077 (7)0.0027 (7)0.0154 (7)
F30.0666 (10)0.0331 (7)0.0749 (8)0.0067 (7)0.0047 (7)0.0149 (6)
F40.1436 (17)0.0460 (9)0.0540 (7)0.0211 (10)0.0122 (9)0.0108 (6)
B20.0395 (15)0.0437 (15)0.0414 (10)0.0055 (12)0.0028 (10)0.0091 (10)
F50.0962 (13)0.0488 (9)0.0854 (9)0.0195 (9)0.0092 (9)0.0170 (8)
F6A0.209 (9)0.056 (4)0.047 (2)0.057 (4)0.040 (4)0.008 (2)
F7A0.084 (4)0.084 (4)0.116 (5)0.009 (4)0.064 (4)0.003 (4)
F8A0.075 (4)0.072 (4)0.147 (5)0.023 (3)0.056 (5)0.046 (4)
F6B0.064 (2)0.063 (2)0.114 (3)0.0096 (17)0.045 (2)0.021 (2)
F7B0.159 (5)0.103 (3)0.0495 (14)0.061 (4)0.004 (2)0.0062 (16)
F8B0.051 (2)0.096 (3)0.206 (5)0.010 (2)0.051 (3)0.079 (3)
Geometric parameters (Å, º) top
Cu—N42.0144 (16)C13—H13A0.9400
Cu—N22.0309 (16)C14—C151.387 (3)
Cu—N62.0313 (16)C14—H14A0.9400
Cu—N12.0347 (15)C15—C161.483 (3)
Cu—N32.2388 (16)C16—C171.392 (3)
Cu—N52.4506 (16)C17—C181.372 (4)
N1—C11.335 (3)C17—H17A0.9400
N1—C51.350 (2)C18—C191.380 (3)
N2—C101.339 (3)C18—H18A0.9400
N2—C61.358 (2)C19—C201.383 (3)
N3—C201.333 (3)C19—H19A0.9400
N3—C161.341 (3)C20—H20A0.9400
N4—C111.337 (3)C21—C221.383 (3)
N4—C151.352 (3)C21—C301.501 (2)
N5—C301.336 (2)C22—C231.388 (3)
N5—C291.341 (2)C22—H22A0.9400
N6—C211.345 (3)C23—C241.369 (3)
N6—C251.351 (2)C23—H23A0.9400
C1—C21.381 (3)C24—C251.377 (3)
C1—H1A0.9400C24—H24A0.9400
C2—C31.368 (4)C25—H25A0.9400
C2—H2A0.9400C26—C301.386 (3)
C3—C41.380 (4)C26—C271.395 (3)
C3—H3A0.9400C26—H26A0.9400
C4—C51.393 (3)C27—C281.370 (3)
C4—H4A0.9400C27—H27A0.9400
C5—C61.468 (3)C28—C291.382 (3)
C6—C71.387 (3)C28—H28A0.9400
C7—C81.377 (3)C29—H29A0.9400
C7—H7A0.9400B1—F41.374 (3)
C8—C91.373 (3)B1—F31.377 (3)
C8—H8A0.9400B1—F11.386 (3)
C9—C101.387 (3)B1—F21.404 (3)
C9—H9B0.9400B2—F8B1.313 (4)
C10—H10A0.9400B2—F6B1.334 (4)
C11—C121.379 (3)B2—F7B1.337 (4)
C11—H11A0.9400B2—F7A1.351 (5)
C12—C131.373 (4)B2—F51.368 (3)
C12—H12A0.9400B2—F6A1.402 (5)
C13—C141.373 (4)B2—F8A1.409 (6)
N4—Cu—N2174.08 (6)C12—C13—H13A120.3
N4—Cu—N691.04 (6)C13—C14—C15120.3 (2)
N2—Cu—N694.81 (6)C13—C14—H14A119.8
N4—Cu—N194.04 (6)C15—C14—H14A119.8
N2—Cu—N180.47 (6)N4—C15—C14119.9 (2)
N6—Cu—N1166.16 (6)N4—C15—C16115.94 (17)
N4—Cu—N377.31 (7)C14—C15—C16124.2 (2)
N2—Cu—N3100.51 (6)N3—C16—C17121.4 (2)
N6—Cu—N3101.71 (6)N3—C16—C15115.58 (18)
N1—Cu—N391.97 (6)C17—C16—C15123.0 (2)
N4—Cu—N599.13 (6)C18—C17—C16118.8 (2)
N2—Cu—N583.42 (6)C18—C17—H17A120.6
N6—Cu—N574.14 (6)C16—C17—H17A120.6
N1—Cu—N592.33 (6)C17—C18—C19120.0 (2)
N3—Cu—N5174.61 (6)C17—C18—H18A120.0
C1—N1—C5119.01 (17)C19—C18—H18A120.0
C1—N1—Cu126.67 (13)C18—C19—C20117.9 (2)
C5—N1—Cu114.18 (13)C18—C19—H19A121.0
C10—N2—C6118.84 (17)C20—C19—H19A121.0
C10—N2—Cu126.24 (13)N3—C20—C19122.8 (2)
C6—N2—Cu113.80 (13)N3—C20—H20A118.6
C20—N3—C16119.03 (18)C19—C20—H20A118.6
C20—N3—Cu128.30 (13)N6—C21—C22121.80 (16)
C16—N3—Cu110.50 (13)N6—C21—C30115.75 (17)
C11—N4—C15119.49 (18)C22—C21—C30122.44 (18)
C11—N4—Cu122.36 (14)C21—C22—C23119.0 (2)
C15—N4—Cu118.14 (14)C21—C22—H22A120.5
C30—N5—C29117.54 (18)C23—C22—H22A120.5
C30—N5—Cu102.31 (11)C24—C23—C22119.2 (2)
C29—N5—Cu124.94 (14)C24—C23—H23A120.4
C21—N6—C25118.56 (17)C22—C23—H23A120.4
C21—N6—Cu119.66 (11)C23—C24—C25119.25 (18)
C25—N6—Cu121.77 (14)C23—C24—H24A120.4
N1—C1—C2122.5 (2)C25—C24—H24A120.4
N1—C1—H1A118.8N6—C25—C24122.2 (2)
C2—C1—H1A118.8N6—C25—H25A118.9
C3—C2—C1119.0 (2)C24—C25—H25A118.9
C3—C2—H2A120.5C30—C26—C27117.9 (2)
C1—C2—H2A120.5C30—C26—H26A121.1
C2—C3—C4119.4 (2)C27—C26—H26A121.1
C2—C3—H3A120.3C28—C27—C26118.9 (2)
C4—C3—H3A120.3C28—C27—H27A120.5
C3—C4—C5119.2 (2)C26—C27—H27A120.5
C3—C4—H4A120.4C27—C28—C29119.40 (18)
C5—C4—H4A120.4C27—C28—H28A120.3
N1—C5—C4120.9 (2)C29—C28—H28A120.3
N1—C5—C6115.26 (16)N5—C29—C28122.7 (2)
C4—C5—C6123.83 (19)N5—C29—H29A118.7
N2—C6—C7121.2 (2)C28—C29—H29A118.7
N2—C6—C5114.73 (16)N5—C30—C26123.60 (16)
C7—C6—C5124.03 (18)N5—C30—C21114.84 (17)
C8—C7—C6119.5 (2)C26—C30—C21121.51 (18)
C8—C7—H7A120.3F4—B1—F3110.12 (18)
C6—C7—H7A120.3F4—B1—F1110.1 (2)
C9—C8—C7119.1 (2)F3—B1—F1110.5 (2)
C9—C8—H8A120.5F4—B1—F2109.4 (2)
C7—C8—H8A120.5F3—B1—F2109.2 (2)
C8—C9—C10119.4 (2)F1—B1—F2107.39 (18)
C8—C9—H9B120.3F8B—B2—F6B111.3 (3)
C10—C9—H9B120.3F8B—B2—F7B110.6 (4)
N2—C10—C9121.8 (2)F6B—B2—F7B112.2 (3)
N2—C10—H10A119.1F8B—B2—F5103.0 (3)
C9—C10—H10A119.1F6B—B2—F5108.2 (3)
N4—C11—C12122.6 (2)F7B—B2—F5111.2 (3)
N4—C11—H11A118.7F7A—B2—F5110.5 (4)
C12—C11—H11A118.7F7A—B2—F6A106.7 (5)
C13—C12—C11118.4 (2)F5—B2—F6A116.9 (3)
C13—C12—H12A120.8F7A—B2—F8A104.6 (4)
C11—C12—H12A120.8F5—B2—F8A115.6 (3)
C14—C13—C12119.3 (2)F6A—B2—F8A101.4 (4)
C14—C13—H13A120.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···F2i0.942.543.342 (3)144
C8—H8A···F2ii0.942.353.274 (3)169
C10—H10A···F6Biii0.942.493.376 (4)158
C13—H13A···F8Biv0.942.173.063 (5)158
C26—H26A···F40.942.313.191 (3)155
C27—H27A···F10.942.543.303 (3)138
Symmetry codes: (i) x+1, y1, z; (ii) x+1, y, z; (iii) x+1, y+1, z+1; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C10H8N2)3](BF4)2
Mr705.72
Crystal system, space groupTriclinic, P1
Temperature (K)203
a, b, c (Å)7.8633 (2), 10.7810 (2), 18.3211 (4)
α, β, γ (°)101.118 (1), 90.750 (1), 98.091 (1)
V3)1507.54 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.81
Crystal size (mm)0.29 × 0.09 × 0.06
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.799, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
35533, 6145, 4809
Rint0.081
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.088, 1.06
No. of reflections6145
No. of parameters451
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.68, 0.30

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Crystal Impact, 2006), publCIF (Westrip, 2007).

Selected geometric parameters (Å, º) top
Cu—N42.0144 (16)Cu—N12.0347 (15)
Cu—N22.0309 (16)Cu—N32.2388 (16)
Cu—N62.0313 (16)Cu—N52.4506 (16)
N4—Cu—N2174.08 (6)N6—Cu—N3101.71 (6)
N4—Cu—N691.04 (6)N1—Cu—N391.97 (6)
N2—Cu—N694.81 (6)N4—Cu—N599.13 (6)
N4—Cu—N194.04 (6)N2—Cu—N583.42 (6)
N2—Cu—N180.47 (6)N6—Cu—N574.14 (6)
N6—Cu—N1166.16 (6)N1—Cu—N592.33 (6)
N4—Cu—N377.31 (7)N3—Cu—N5174.61 (6)
N2—Cu—N3100.51 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···F2i0.942.543.342 (3)144
C8—H8A···F2ii0.942.353.274 (3)169
C10—H10A···F6Biii0.942.493.376 (4)158
C13—H13A···F8Biv0.942.173.063 (5)158
C26—H26A···F40.942.313.191 (3)155
C27—H27A···F10.942.543.303 (3)138
Symmetry codes: (i) x+1, y1, z; (ii) x+1, y, z; (iii) x+1, y+1, z+1; (iv) x, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds