Download citation
Download citation
link to html
4-(2,4,6-Trinitro­anilino)benzoic acid (p-picramino­benzoic acid), C13H8N4O8, obtained by the reaction of 2,4,6-trinitro­benzene­sulfonic acid (picrylsulfonic acid) with 4-amino­benzoic acid in 2-propanol–water, forms a two-dimensional hydrogen-bonded network based on centrosymmetric cyclic R22(8) carboxylic acid dimers which are extended through lateral N—H...Ocarbox­yl inter­actions. The amino group also makes an intra­molecular N—H...Onitro hydrogen bond, while the two aromatic ring systems, are, as expected, non-coplanar, the C—C—N—C torsion angles being 152.0 (2) (picryl) and 136.1 (2)° (benzoic acid)..

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807058497/bt2608sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807058497/bt2608Isup2.hkl
Contains datablock I

CCDC reference: 673010

Key indicators

  • Single-crystal X-ray study
  • T = 130 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.044
  • wR factor = 0.100
  • Data-to-parameter ratio = 10.5

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT432_ALERT_2_B Short Inter X...Y Contact O62 .. C1 .. 2.91 Ang.
Alert level C PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.43 Ratio PLAT432_ALERT_2_C Short Inter X...Y Contact O62 .. C2 .. 2.97 Ang.
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Picryl chloride (1-chloro-2,4,6-trinitrobenzene) reacts with the isomeric aminobenzoic acids to give the corresponding picraminobenzoic acids (Crocker & Matthews, 1911). The same reaction products may be obtained using picrylsulfonic acid (2,4,6-trinitrobenzenesulfonic acid) and the metal salts of these three compounds have been investigated for their potential as energetic ballistic modifiers (Palaiah et al., 2000; Nair et al., 2001; Kulkarni et al., 2005). Similar addition compounds are obtained with amino acids and proteins (Goldfarb, 1966) while we have also found that picrylsulfonic acid reacts with guanidine carbonate in methanol to give the analogous picrylguanidine (Smith et al., 2007a). This is in contrast to the formation of the proton-transfer salt guanidinium picrylsulfonate (Russell & Ward, 1997) from the reaction of picrylsulfonic acid with guanidinium chloride in methanol-toluene solution. The structures of the salt quinolinium picrylsulfonate (Smith et al., 2006) and the adduct salt 2-carboxyquinolinium-picrylsulfonate-quinolinium-2-carboxylate (1/1/1) (Smith et al., 2007b) are also known. Of the three isomeric picraminobenzoic acids synthesized from picrylsulfonic acid, only the para-isomer 4-(2,4,6-trinitroanilino)benzoic acid (I) proved suitable for X-ray analysis and the structure is reported here.

The molecules of the title compound (Fig. 1) form centrosymmetric hydrogen-bonded cyclic homodimers [graph set R22(8)] which are extended into a two-dimensional network structure through lateral NH···Ocarboxyl interactions (Fig. 2; Table 1). The amino-N forms an intramolecular hydrogen bond with an O-acceptor of one of the ortho- related nitro groups which is less rotated out of the plane of the benzene ring than the second, more sterically encumbered group [torsion angle C1–C2–N2–O22, -155.43 (19) ° cf. C5–C6–N6–O62, 123.1 (2) °]. The third group is essentially coplanar with the ring [C3–C4–N4–O42, 177.4 (2) °]. The carboxylic acid group also lies out of the plane of the benzene ring [torsion angle C21–C11–C71–O721, -165.4 (2) °] while this ring is also rotated out of the plane of the picryl residue [torsion angles C2–C1–N14–C41, 152.0 (2) Å; C1–N14–C41–C51, 136.1 (2) Å].

Related literature top

For the structures of related picryl-substituted compounds: see Russell & Ward (1997); Smith et al. (2006, 2007a). For the synthesis of picraminobenzoic acids and their salts, see: Crocker & Matthews (1911). For related literature, see: Goldfarb (1966); Kulkarni et al. (2005); Nair et al. (2001); Palaiah et al. (2000); Smith et al. (2007b).

Experimental top

The title compound was synthesized by heating under reflux 1 mmol quantities of 2,4,6-trinitrobenzenesulfonic acid (picrylsulfonic acid) and 4-aminobenzoic acid in 50 ml of 80% propan-2-ol-water for 10 minutes. This reaction is analogous to that of picryl chloride with 4-amimobenzoic acid (Crocker & Matthews, 1911) which gives the same product. After concentration to ca 30 ml, partial room temperature evaporation of the hot-filtered solution gave yellow prisms of (I) [m.pt. 558 K (Crocker & Matthews, 1911)].

Refinement top

Interactive hydrogen atoms were located by difference methods and their positional and isotropic displacement parameters were refined. The aromatic ring H atoms were included in the refinement in calculated positions (C–H = 0.95 Å) using a riding model approximation, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART (Bruker, 2000); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. Molecular configuration and atom naming scheme for (I). Non-H atom displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. A perspective view of the two-dimensional network structure of (I) showing the cyclic R22(8) centrosymmetric hydrogen-bonded carboxylic acid homodimers extended through NH···Ocarboxyl associations. Hydrogen bonds are shown as dashed lines. Symmetry code (iv): 1 - x, 1/2 + y, 3/2 - z. For other symmetry codes, see Table 1.
4-(2,4,6-Trinitroanilino)benzoic acid top
Crystal data top
C13H8N4O8F(000) = 712
Mr = 348.23Dx = 1.646 Mg m3
Monoclinic, P21/cMelting point: 558 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 20.317 (2) ÅCell parameters from 1942 reflections
b = 5.0919 (5) Åθ = 3.0–27.4°
c = 13.9364 (15) ŵ = 0.14 mm1
β = 102.903 (2)°T = 130 K
V = 1405.4 (2) Å3Needle, yellow
Z = 40.45 × 0.06 × 0.06 mm
Data collection top
Bruker CCD area-detector
diffractometer
2462 independent reflections
Radiation source: sealed tube2057 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 2422
Tmin = 0.95, Tmax = 0.99k = 56
5876 measured reflectionsl = 616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0309P)2 + 0.4928P]
where P = (Fo2 + 2Fc2)/3
2462 reflections(Δ/σ)max < 0.001
234 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C13H8N4O8V = 1405.4 (2) Å3
Mr = 348.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 20.317 (2) ŵ = 0.14 mm1
b = 5.0919 (5) ÅT = 130 K
c = 13.9364 (15) Å0.45 × 0.06 × 0.06 mm
β = 102.903 (2)°
Data collection top
Bruker CCD area-detector
diffractometer
2462 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
2057 reflections with I > 2σ(I)
Tmin = 0.95, Tmax = 0.99Rint = 0.031
5876 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.26 e Å3
2462 reflectionsΔρmin = 0.21 e Å3
234 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O210.28495 (8)0.6642 (3)0.35981 (12)0.0277 (5)
O220.19826 (8)0.9192 (3)0.31493 (11)0.0256 (5)
O410.02274 (8)0.5879 (4)0.29940 (13)0.0373 (6)
O420.03744 (8)0.2949 (3)0.40479 (13)0.0342 (6)
O610.16455 (8)0.0561 (3)0.66743 (11)0.0315 (6)
O620.22289 (8)0.1459 (3)0.57694 (12)0.0280 (5)
O7110.42517 (8)0.1190 (4)0.95005 (11)0.0337 (6)
O7210.49608 (8)0.0810 (4)0.87222 (13)0.0362 (6)
N20.22466 (9)0.7173 (4)0.35345 (13)0.0203 (6)
N40.00133 (9)0.4347 (4)0.36657 (14)0.0251 (6)
N60.18611 (9)0.0327 (4)0.59289 (13)0.0210 (6)
N140.28062 (9)0.3181 (4)0.49909 (13)0.0199 (6)
C10.21318 (11)0.3574 (4)0.47150 (15)0.0171 (6)
C20.18317 (10)0.5347 (4)0.39510 (15)0.0175 (6)
C30.11423 (11)0.5621 (4)0.36082 (15)0.0192 (7)
C40.07171 (11)0.4169 (4)0.40398 (16)0.0205 (7)
C50.09676 (11)0.2531 (4)0.48320 (16)0.0202 (7)
C60.16532 (11)0.2273 (4)0.51474 (15)0.0179 (6)
C110.39836 (10)0.1101 (4)0.77544 (16)0.0199 (7)
C210.34772 (11)0.2976 (4)0.76841 (16)0.0208 (7)
C310.30798 (11)0.3645 (4)0.67791 (15)0.0198 (7)
C410.31861 (10)0.2401 (4)0.59402 (15)0.0183 (7)
C510.36815 (10)0.0491 (4)0.60025 (16)0.0207 (7)
C610.40803 (11)0.0152 (5)0.69090 (16)0.0226 (7)
C710.44058 (11)0.0511 (5)0.87385 (16)0.0240 (7)
H30.096600.679300.308300.0230*
H50.067000.160600.514900.0240*
H140.3038 (12)0.386 (5)0.4598 (17)0.026 (7)*
H210.340400.380200.826300.0250*
H310.273700.494100.673100.0240*
H510.374500.036600.542500.0250*
H610.442100.145100.695600.0270*
H7210.5209 (17)0.101 (7)0.934 (3)0.079 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O210.0207 (8)0.0318 (10)0.0317 (9)0.0033 (7)0.0083 (7)0.0084 (8)
O220.0308 (9)0.0194 (9)0.0260 (9)0.0026 (7)0.0048 (7)0.0061 (7)
O410.0263 (9)0.0420 (11)0.0392 (11)0.0068 (8)0.0023 (8)0.0146 (9)
O420.0219 (9)0.0400 (11)0.0414 (11)0.0048 (8)0.0084 (8)0.0058 (9)
O610.0345 (10)0.0403 (11)0.0203 (9)0.0016 (8)0.0073 (7)0.0072 (8)
O620.0305 (9)0.0183 (9)0.0310 (9)0.0035 (7)0.0021 (8)0.0005 (7)
O7110.0282 (9)0.0546 (12)0.0168 (9)0.0165 (9)0.0017 (7)0.0008 (8)
O7210.0270 (10)0.0586 (13)0.0202 (9)0.0228 (9)0.0009 (8)0.0017 (9)
N20.0235 (10)0.0198 (11)0.0167 (9)0.0014 (8)0.0027 (8)0.0010 (8)
N40.0213 (10)0.0267 (12)0.0266 (11)0.0017 (9)0.0037 (9)0.0011 (9)
N60.0215 (10)0.0187 (11)0.0199 (10)0.0031 (8)0.0017 (8)0.0025 (8)
N140.0177 (10)0.0243 (11)0.0169 (10)0.0021 (8)0.0022 (8)0.0029 (8)
C10.0218 (11)0.0144 (11)0.0149 (11)0.0019 (9)0.0035 (9)0.0047 (9)
C20.0221 (11)0.0161 (12)0.0148 (10)0.0002 (9)0.0049 (9)0.0015 (9)
C30.0219 (11)0.0198 (13)0.0144 (11)0.0032 (10)0.0008 (9)0.0004 (9)
C40.0182 (11)0.0232 (13)0.0187 (11)0.0008 (10)0.0011 (9)0.0016 (10)
C50.0224 (12)0.0191 (12)0.0194 (11)0.0018 (10)0.0053 (9)0.0020 (9)
C60.0221 (11)0.0155 (12)0.0145 (10)0.0021 (9)0.0006 (9)0.0009 (9)
C110.0161 (11)0.0228 (13)0.0198 (11)0.0012 (9)0.0018 (9)0.0041 (10)
C210.0218 (12)0.0202 (12)0.0188 (11)0.0002 (10)0.0011 (9)0.0007 (9)
C310.0177 (11)0.0180 (12)0.0218 (12)0.0052 (9)0.0007 (9)0.0013 (10)
C410.0162 (11)0.0198 (12)0.0174 (11)0.0017 (9)0.0007 (9)0.0030 (9)
C510.0209 (11)0.0235 (13)0.0177 (11)0.0008 (10)0.0043 (9)0.0005 (9)
C610.0172 (11)0.0239 (13)0.0260 (12)0.0049 (10)0.0033 (9)0.0028 (10)
C710.0190 (11)0.0300 (14)0.0217 (12)0.0048 (10)0.0019 (10)0.0045 (10)
Geometric parameters (Å, º) top
O21—N21.238 (3)C2—C31.382 (3)
O22—N21.227 (3)C3—C41.374 (3)
O41—N41.222 (3)C4—C51.387 (3)
O42—N41.226 (3)C5—C61.370 (3)
O61—N61.220 (2)C11—C711.477 (3)
O62—N61.228 (3)C11—C211.391 (3)
O711—C711.222 (3)C11—C611.392 (3)
O721—C711.318 (3)C21—C311.380 (3)
O721—H7210.90 (4)C31—C411.388 (3)
N2—C21.460 (3)C41—C511.388 (3)
N4—C41.462 (3)C51—C611.379 (3)
N6—C61.463 (3)C3—H30.9500
N14—C411.431 (3)C5—H50.9500
N14—C11.353 (3)C21—H210.9500
N14—H140.87 (2)C31—H310.9500
C1—C61.418 (3)C51—H510.9500
C1—C21.425 (3)C61—H610.9500
C71—O721—H721110 (2)N6—C6—C5114.05 (19)
O21—N2—C2118.84 (18)C61—C11—C71122.0 (2)
O22—N2—C2118.23 (18)C21—C11—C71118.2 (2)
O21—N2—O22122.91 (19)C21—C11—C61119.8 (2)
O41—N4—C4118.19 (18)C11—C21—C31120.4 (2)
O42—N4—C4117.86 (18)C21—C31—C41119.2 (2)
O41—N4—O42123.95 (19)N14—C41—C31119.91 (19)
O61—N6—C6117.96 (18)N14—C41—C51119.08 (19)
O62—N6—C6116.92 (17)C31—C41—C51120.92 (19)
O61—N6—O62125.10 (19)C41—C51—C61119.5 (2)
C1—N14—C41127.36 (18)C11—C61—C51120.1 (2)
C41—N14—H14115.9 (16)O711—C71—O721123.1 (2)
C1—N14—H14114.8 (16)O711—C71—C11122.8 (2)
N14—C1—C6123.88 (19)O721—C71—C11114.18 (19)
N14—C1—C2122.9 (2)C2—C3—H3121.00
C2—C1—C6113.21 (19)C4—C3—H3121.00
N2—C2—C1120.80 (18)C4—C5—H5121.00
N2—C2—C3115.40 (18)C6—C5—H5121.00
C1—C2—C3123.62 (19)C11—C21—H21120.00
C2—C3—C4118.83 (19)C31—C21—H21120.00
N4—C4—C5119.0 (2)C21—C31—H31120.00
N4—C4—C3119.87 (19)C41—C31—H31120.00
C3—C4—C5121.2 (2)C41—C51—H51120.00
C4—C5—C6118.6 (2)C61—C51—H51120.00
N6—C6—C1121.43 (19)C11—C61—H61120.00
C1—C6—C5124.30 (19)C51—C61—H61120.00
O21—N2—C2—C123.5 (3)N14—C1—C6—N61.3 (3)
O22—N2—C2—C1155.43 (19)C1—C2—C3—C41.9 (3)
O21—N2—C2—C3161.37 (19)N2—C2—C3—C4173.13 (19)
O22—N2—C2—C319.7 (3)C2—C3—C4—C52.6 (3)
O41—N4—C4—C32.7 (3)C2—C3—C4—N4177.63 (19)
O42—N4—C4—C3177.4 (2)C3—C4—C5—C63.5 (3)
O41—N4—C4—C5177.0 (2)N4—C4—C5—C6176.78 (19)
O42—N4—C4—C52.8 (3)C4—C5—C6—N6174.90 (19)
O62—N6—C6—C151.9 (3)C4—C5—C6—C10.1 (3)
O62—N6—C6—C5123.1 (2)C61—C11—C21—C311.5 (3)
O61—N6—C6—C555.2 (3)C71—C11—C61—C51178.9 (2)
O61—N6—C6—C1129.8 (2)C71—C11—C21—C31178.4 (2)
C41—N14—C1—C2152.0 (2)C21—C11—C61—C510.9 (3)
C1—N14—C41—C51136.1 (2)C61—C11—C71—O711165.5 (2)
C1—N14—C41—C3147.1 (3)C61—C11—C71—O72114.4 (3)
C41—N14—C1—C628.2 (3)C21—C11—C71—O71114.7 (3)
N14—C1—C2—N210.5 (3)C21—C11—C71—O721165.4 (2)
C2—C1—C6—N6178.50 (18)C11—C21—C31—C410.8 (3)
C2—C1—C6—C54.1 (3)C21—C31—C41—C510.5 (3)
N14—C1—C6—C5175.7 (2)C21—C31—C41—N14176.3 (2)
C6—C1—C2—N2169.77 (18)N14—C41—C51—C61175.8 (2)
N14—C1—C2—C3174.8 (2)C31—C41—C51—C611.0 (3)
C6—C1—C2—C35.0 (3)C41—C51—C61—C110.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N14—H14···O210.87 (2)1.96 (2)2.638 (2)133 (2)
N14—H14···O711i0.87 (2)2.50 (3)3.177 (3)135 (2)
O721—H721···O711ii0.90 (4)1.74 (4)2.639 (2)174 (3)
C31—H31···O62iii0.952.373.178 (3)143
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z+2; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC13H8N4O8
Mr348.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)130
a, b, c (Å)20.317 (2), 5.0919 (5), 13.9364 (15)
β (°) 102.903 (2)
V3)1405.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.45 × 0.06 × 0.06
Data collection
DiffractometerBruker CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.95, 0.99
No. of measured, independent and
observed [I > 2σ(I)] reflections
5876, 2462, 2057
Rint0.031
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.100, 1.10
No. of reflections2462
No. of parameters234
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.21

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N14—H14···O210.87 (2)1.96 (2)2.638 (2)133 (2)
N14—H14···O711i0.87 (2)2.50 (3)3.177 (3)135 (2)
O721—H721···O711ii0.90 (4)1.74 (4)2.639 (2)174 (3)
C31—H31···O62iii0.952.373.178 (3)143
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z+2; (iii) x, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds