Download citation
Download citation
link to html
The title compound, C20H15Cl4N3O, was prepared by the reaction of 2,2-bis­(2,6-dichloro­styr­yl)oxirane and 1,2,4-triazole. In the crystal structure, mol­ecules assemble along the b axis, forming helical suprastructures, which further assemble along the c axis, forming two-dimensional layer structures.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807058898/hg2350sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807058898/hg2350Isup2.hkl
Contains datablock I

CCDC reference: 673044

Key indicators

  • Single-crystal X-ray study
  • T = 153 K
  • Mean [sigma](C-C)= 0.003 Å
  • R factor = 0.031
  • wR factor = 0.085
  • Data-to-parameter ratio = 13.4

checkCIF/PLATON results

No syntax errors found


No errors found in this datablock

Comment top

Derivatives of 1,2,4-triazole are known to exhibit diverse applications in the fields of medicine, agriculture and industry. Among the agriculture profiles of various 1,2,4-triazole and its derivatives, their fungicidal, bactericidal, pesticidal and plant growth properties (Massa et al., 1992) seem to be the most widely documented. For these reasons, the structures of substituted 1,2,4-triazole have been a subject of interest in our laboratory. The crystal structure of the title compound is presented here.

The bond lengths and angles are normal for this type of compound (Rong et al., 2006). The dihedral angles formed by phenyl ring (C1 - C6) and phenyl ring (C13 –C18) with plane (N1/N2/N3/C19/C20) are 34.20 (2) and 10.10 (2)°, respectively. The dihedral angle between the benzene rings is 24.41 (3)°. The molecules assemble to form helical superstructures along the b axis. The helic pitch is 10.65 (2) Å. The right-handed and left-handed helix associate through weak hydrogen bonds, which further assemble along c axis to form two-dimensional layer structure through O—H···N hydrogen bonds.

Related literature top

For related literature, see: Graham & Jorg (1985); Massa et al. (1992); Rong et al. (2006).

Experimental top

A mixture of 1,2,4-triazole 0.90 g (0.013 mol), 2,2-bis(2,6-dichlorostyryl)oxirane 3.86 g (0.01 mol) dissolved in DMF and powdered potassium carbonate 0.1 g was stirred vigorously at gentle reflux for 2 h (Graham et al., 1985). The reaction mixture was cooled, then concentrated by removing the solvent under reduced pressure·The residue was taken up in water. The solid residue was then recrystallized from ethanol to give 3-((1H-1,2,4-triazol-1-yl)methyl)-1,5-bis(2,6-dichlorophenyl) penta-1,4-dien-3-ol 3.64 g(yield 80%). Single crystals suitable for X-ray measurement were obtained by recrystallization from methanol at room temperature.

Refinement top

All H atoms were found on difference maps. The hydroxyl H atoms were refined freely, giving an O—H bond distance of 0.74 Å. The remaining H atoms were placed in calculated positions, with C—H = 0.95 or 0.99 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2 times Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku 2004); cell refinement: RAPID-AUTO (Rigaku 2004); data reduction: RAPID-AUTO (Rigaku 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL (Sheldrick, 2001; molecular graphics: SHELXTL (Sheldrick, 2001; software used to prepare material for publication: SHELXTL (Sheldrick, 2001.

Figures top
[Figure 1] Fig. 1. View of the title compound (I), with displacement ellipsoids drawn at the 35% probability level.
[Figure 2] Fig. 2. A packing diagram of the molecule of the title compound, view down b axis. Hydrogen bonds are shown as dashed lines.
1,5-Bis(2,6-dichlorophenyl)-3-[(1H-1,2,4-triazol-1-yl)methyl]penta-1,4-dien-3-ol top
Crystal data top
C20H15Cl4N3OF(000) = 928
Mr = 455.15Dx = 1.535 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1494 reflections
a = 8.3413 (17) Åθ = 2.6–26.4°
b = 10.652 (2) ŵ = 0.62 mm1
c = 22.229 (4) ÅT = 153 K
β = 94.32 (3)°Block, colorless
V = 1969.5 (7) Å30.32 × 0.22 × 0.16 mm
Z = 4
Data collection top
Rigaku RAXIS RAPID IP area-detector
diffractometer
3470 independent reflections
Radiation source: Rotating Anode2901 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω Oscillation scansθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi 1995)
h = 99
Tmin = 0.827, Tmax = 0.908k = 1211
15134 measured reflectionsl = 2626
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0359P)2 + 0.8502P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3470 reflectionsΔρmax = 0.27 e Å3
258 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0048 (6)
Crystal data top
C20H15Cl4N3OV = 1969.5 (7) Å3
Mr = 455.15Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.3413 (17) ŵ = 0.62 mm1
b = 10.652 (2) ÅT = 153 K
c = 22.229 (4) Å0.32 × 0.22 × 0.16 mm
β = 94.32 (3)°
Data collection top
Rigaku RAXIS RAPID IP area-detector
diffractometer
3470 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi 1995)
2901 reflections with I > 2σ(I)
Tmin = 0.827, Tmax = 0.908Rint = 0.031
15134 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.27 e Å3
3470 reflectionsΔρmin = 0.22 e Å3
258 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl40.43666 (7)0.42402 (6)0.34867 (3)0.06239 (19)
Cl20.33568 (7)0.22308 (5)0.23550 (3)0.05817 (18)
Cl30.85225 (8)0.35813 (5)0.54500 (3)0.0637 (2)
Cl10.23987 (7)0.25254 (6)0.31663 (3)0.0666 (2)
O10.64236 (17)0.00926 (13)0.42224 (7)0.0441 (4)
N10.98450 (18)0.03373 (14)0.38889 (7)0.0387 (4)
C130.2879 (2)0.01739 (17)0.27484 (8)0.0351 (4)
C60.6561 (2)0.39721 (17)0.44453 (8)0.0348 (4)
N21.0809 (2)0.13526 (15)0.38301 (8)0.0473 (4)
C100.8402 (2)0.01560 (19)0.34845 (9)0.0433 (5)
H10A0.82770.07520.33970.052*
H10B0.85540.05870.30980.052*
C90.6840 (2)0.06435 (16)0.37317 (8)0.0348 (4)
C110.5554 (2)0.05100 (18)0.32121 (8)0.0384 (4)
H11A0.57650.08820.28380.046*
C150.0685 (2)0.1425 (2)0.22533 (9)0.0471 (5)
H15A0.00880.21850.22340.057*
N31.1824 (2)0.00913 (18)0.45797 (8)0.0521 (5)
C120.4179 (2)0.00754 (18)0.32389 (8)0.0383 (4)
H12A0.39980.04770.36090.046*
C80.6932 (2)0.20331 (16)0.38717 (8)0.0352 (4)
H8A0.73180.25590.35690.042*
C140.1950 (2)0.12640 (19)0.26875 (8)0.0400 (4)
C40.7604 (3)0.58210 (19)0.50010 (9)0.0500 (5)
H4A0.82600.61620.53290.060*
C10.5691 (2)0.48093 (18)0.40644 (9)0.0414 (4)
C50.7486 (2)0.45377 (18)0.49228 (8)0.0397 (4)
C170.1171 (2)0.0629 (2)0.18888 (9)0.0495 (5)
H17A0.09160.12890.16100.059*
C201.1960 (2)0.1150 (2)0.42536 (9)0.0475 (5)
H20A1.28360.17140.43270.057*
C180.2413 (2)0.07738 (18)0.23329 (9)0.0404 (4)
C70.6534 (2)0.25908 (17)0.43680 (8)0.0367 (4)
H7A0.62150.20850.46900.044*
C191.0475 (2)0.0394 (2)0.43300 (9)0.0477 (5)
H19A1.00180.11630.44500.057*
C20.5793 (3)0.60988 (19)0.41337 (9)0.0473 (5)
H2B0.51910.66360.38600.057*
C160.0304 (2)0.0475 (2)0.18522 (9)0.0525 (6)
H16A0.05540.05760.15500.063*
C30.6762 (3)0.65986 (19)0.45980 (10)0.0508 (5)
H3B0.68520.74840.46410.061*
H1A0.686 (3)0.006 (2)0.4516 (11)0.050 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl40.0641 (4)0.0592 (3)0.0593 (3)0.0088 (3)0.0255 (3)0.0059 (3)
Cl20.0587 (3)0.0427 (3)0.0695 (4)0.0006 (2)0.0191 (3)0.0066 (2)
Cl30.0799 (4)0.0533 (3)0.0535 (3)0.0072 (3)0.0249 (3)0.0025 (3)
Cl10.0618 (4)0.0589 (4)0.0756 (4)0.0161 (3)0.0185 (3)0.0215 (3)
O10.0496 (8)0.0393 (7)0.0408 (8)0.0077 (6)0.0145 (7)0.0034 (6)
N10.0343 (8)0.0369 (8)0.0433 (9)0.0072 (7)0.0084 (7)0.0077 (7)
C130.0291 (9)0.0435 (10)0.0321 (9)0.0039 (8)0.0022 (7)0.0061 (8)
C60.0360 (9)0.0345 (9)0.0342 (9)0.0006 (8)0.0053 (8)0.0016 (8)
N20.0450 (9)0.0413 (9)0.0542 (10)0.0001 (8)0.0055 (8)0.0035 (8)
C100.0387 (10)0.0443 (11)0.0445 (11)0.0073 (8)0.0133 (9)0.0144 (9)
C90.0341 (9)0.0330 (9)0.0355 (9)0.0016 (7)0.0090 (8)0.0011 (7)
C110.0366 (10)0.0428 (10)0.0345 (10)0.0046 (8)0.0067 (8)0.0006 (8)
C150.0343 (10)0.0568 (13)0.0492 (12)0.0051 (9)0.0040 (9)0.0114 (10)
N30.0391 (9)0.0672 (12)0.0482 (10)0.0071 (8)0.0092 (8)0.0006 (9)
C120.0386 (10)0.0405 (10)0.0344 (10)0.0043 (8)0.0062 (8)0.0037 (8)
C80.0326 (9)0.0339 (9)0.0385 (10)0.0019 (8)0.0004 (8)0.0014 (8)
C140.0334 (9)0.0475 (11)0.0385 (10)0.0024 (8)0.0015 (8)0.0016 (8)
C40.0618 (13)0.0412 (11)0.0460 (12)0.0055 (10)0.0027 (10)0.0079 (9)
C10.0428 (10)0.0421 (11)0.0385 (10)0.0021 (8)0.0013 (8)0.0025 (8)
C50.0427 (10)0.0385 (10)0.0372 (10)0.0022 (8)0.0009 (8)0.0023 (8)
C170.0425 (11)0.0588 (13)0.0447 (11)0.0090 (10)0.0127 (9)0.0024 (10)
C200.0379 (10)0.0524 (12)0.0513 (12)0.0012 (9)0.0039 (9)0.0129 (10)
C180.0358 (10)0.0420 (10)0.0422 (10)0.0034 (8)0.0050 (8)0.0037 (9)
C70.0371 (9)0.0347 (9)0.0378 (10)0.0002 (8)0.0003 (8)0.0016 (8)
C190.0417 (11)0.0462 (11)0.0536 (12)0.0072 (9)0.0062 (10)0.0034 (10)
C20.0556 (12)0.0396 (11)0.0464 (11)0.0093 (9)0.0027 (10)0.0066 (9)
C160.0374 (11)0.0726 (15)0.0447 (12)0.0037 (10)0.0147 (9)0.0085 (11)
C30.0669 (14)0.0325 (10)0.0535 (13)0.0003 (10)0.0083 (11)0.0021 (9)
Geometric parameters (Å, º) top
Cl4—C11.739 (2)C15—C161.370 (3)
Cl2—C181.739 (2)C15—C141.386 (3)
Cl3—C51.7341 (19)C15—H15A0.9500
Cl1—C141.737 (2)N3—C191.322 (3)
O1—C91.408 (2)N3—C201.350 (3)
O1—H1A0.74 (2)C12—H12A0.9500
N1—C191.329 (2)C8—C71.317 (3)
N1—N21.360 (2)C8—H8A0.9500
N1—C101.460 (2)C4—C31.374 (3)
C13—C141.397 (3)C4—C51.381 (3)
C13—C181.403 (3)C4—H4A0.9500
C13—C121.483 (2)C1—C21.384 (3)
C6—C11.395 (3)C17—C161.380 (3)
C6—C51.400 (3)C17—C181.385 (3)
C6—C71.481 (2)C17—H17A0.9500
N2—C201.311 (3)C20—H20A0.9500
C10—C91.542 (3)C7—H7A0.9500
C10—H10A0.9900C19—H19A0.9500
C10—H10B0.9900C2—C31.370 (3)
C9—C81.513 (2)C2—H2B0.9500
C9—C111.523 (2)C16—H16A0.9500
C11—C121.310 (3)C3—H3B0.9500
C11—H11A0.9500
C9—O1—H1A115.4 (19)C15—C14—C13123.92 (18)
C19—N1—N2109.47 (15)C15—C14—Cl1116.65 (16)
C19—N1—C10129.67 (17)C13—C14—Cl1119.42 (14)
N2—N1—C10120.81 (16)C3—C4—C5119.11 (19)
C14—C13—C18114.21 (16)C3—C4—H4A120.4
C14—C13—C12119.99 (16)C5—C4—H4A120.4
C18—C13—C12125.74 (17)C2—C1—C6122.84 (18)
C1—C6—C5114.62 (17)C2—C1—Cl4117.28 (15)
C1—C6—C7124.18 (16)C6—C1—Cl4119.86 (15)
C5—C6—C7121.20 (16)C4—C5—C6123.48 (18)
C20—N2—N1101.93 (16)C4—C5—Cl3117.98 (15)
N1—C10—C9114.57 (15)C6—C5—Cl3118.53 (15)
N1—C10—H10A108.6C16—C17—C18119.83 (19)
C9—C10—H10A108.6C16—C17—H17A120.1
N1—C10—H10B108.6C18—C17—H17A120.1
C9—C10—H10B108.6N2—C20—N3115.85 (18)
H10A—C10—H10B107.6N2—C20—H20A122.1
O1—C9—C8113.39 (15)N3—C20—H20A122.1
O1—C9—C11109.57 (15)C17—C18—C13122.98 (18)
C8—C9—C11105.62 (14)C17—C18—Cl2115.59 (15)
O1—C9—C10110.66 (15)C13—C18—Cl2121.41 (14)
C8—C9—C10111.81 (15)C8—C7—C6122.85 (17)
C11—C9—C10105.33 (15)C8—C7—H7A118.6
C12—C11—C9125.37 (18)C6—C7—H7A118.6
C12—C11—H11A117.3N3—C19—N1110.91 (19)
C9—C11—H11A117.3N3—C19—H19A124.5
C16—C15—C14119.26 (19)N1—C19—H19A124.5
C16—C15—H15A120.4C3—C2—C1119.81 (19)
C14—C15—H15A120.4C3—C2—H2B120.1
C19—N3—C20101.83 (17)C1—C2—H2B120.1
C11—C12—C13126.46 (18)C15—C16—C17119.77 (17)
C11—C12—H12A116.8C15—C16—H16A120.1
C13—C12—H12A116.8C17—C16—H16A120.1
C7—C8—C9126.96 (17)C2—C3—C4120.05 (19)
C7—C8—H8A116.5C2—C3—H3B120.0
C9—C8—H8A116.5C4—C3—H3B120.0
C19—N1—N2—C200.5 (2)C3—C4—C5—C60.9 (3)
C10—N1—N2—C20178.22 (16)C3—C4—C5—Cl3178.38 (17)
C19—N1—C10—C987.3 (2)C1—C6—C5—C43.0 (3)
N2—N1—C10—C995.5 (2)C7—C6—C5—C4177.26 (19)
N1—C10—C9—O168.6 (2)C1—C6—C5—Cl3176.25 (14)
N1—C10—C9—C858.8 (2)C7—C6—C5—Cl33.5 (3)
N1—C10—C9—C11173.04 (16)N1—N2—C20—N30.1 (2)
O1—C9—C11—C127.5 (3)C19—N3—C20—N20.3 (2)
C8—C9—C11—C12115.0 (2)C16—C17—C18—C131.7 (3)
C10—C9—C11—C12126.6 (2)C16—C17—C18—Cl2177.19 (17)
C9—C11—C12—C13177.26 (17)C14—C13—C18—C171.8 (3)
C14—C13—C12—C11145.6 (2)C12—C13—C18—C17179.10 (19)
C18—C13—C12—C1137.2 (3)C14—C13—C18—Cl2177.03 (14)
O1—C9—C8—C76.4 (2)C12—C13—C18—Cl20.2 (3)
C11—C9—C8—C7113.6 (2)C9—C8—C7—C6175.63 (16)
C10—C9—C8—C7132.37 (19)C1—C6—C7—C857.6 (3)
C16—C15—C14—C130.4 (3)C5—C6—C7—C8122.7 (2)
C16—C15—C14—Cl1178.21 (16)C20—N3—C19—N10.7 (2)
C18—C13—C14—C150.8 (3)N2—N1—C19—N30.8 (2)
C12—C13—C14—C15178.21 (18)C10—N1—C19—N3178.20 (18)
C18—C13—C14—Cl1179.34 (14)C6—C1—C2—C31.0 (3)
C12—C13—C14—Cl13.2 (2)Cl4—C1—C2—C3177.09 (17)
C5—C6—C1—C23.0 (3)C14—C15—C16—C170.6 (3)
C7—C6—C1—C2177.25 (19)C18—C17—C16—C150.4 (3)
C5—C6—C1—Cl4174.96 (14)C1—C2—C3—C41.4 (3)
C7—C6—C1—Cl44.7 (3)C5—C4—C3—C21.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N3i0.74 (2)2.22 (2)2.940 (2)163 (2)
Symmetry code: (i) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC20H15Cl4N3O
Mr455.15
Crystal system, space groupMonoclinic, P21/c
Temperature (K)153
a, b, c (Å)8.3413 (17), 10.652 (2), 22.229 (4)
β (°) 94.32 (3)
V3)1969.5 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.62
Crystal size (mm)0.32 × 0.22 × 0.16
Data collection
DiffractometerRigaku RAXIS RAPID IP area-detector
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi 1995)
Tmin, Tmax0.827, 0.908
No. of measured, independent and
observed [I > 2σ(I)] reflections
15134, 3470, 2901
Rint0.031
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.085, 1.06
No. of reflections3470
No. of parameters258
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.22

Computer programs: RAPID-AUTO (Rigaku 2004), SHELXTL (Sheldrick, 2001), SHELXTL (Sheldrick, 2001.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N3i0.74 (2)2.22 (2)2.940 (2)163 (2)
Symmetry code: (i) x+2, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds