metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages m627-m628

Di­aqua­bis­[4-(di­methyl­amino)­benzoato]-κ2O,O′;κO-(isonicotinamide-κN1)cobalt(II)

aDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, bDepartment of Chemistry, Faculty of Science, Anadolu University, 26470 Yenibağlar, Eskişehir, Turkey, cDepartment of Physics, Karabük University, 78050 Karabük, Turkey, and dDepartment of Chemistry, Kafkas University, 63100 Kars, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 30 April 2009; accepted 4 May 2009; online 14 May 2009)

The title CoII complex, [Co(C9H10NO2)2(C6H6N2O)(H2O)2], contains two 4-dimethyl­amino­benzoate (DMAB) anions, one isonicotinamide (INA) ligand and two coordinated water mol­ecules. One of the DMAB anions acts as a bidentate ligand, while the other is monodentate. The four O atoms in the equatorial plane around the Co atom form a highly distorted square-planar arrangement, while the distorted octa­hedral coordination geometry is completed by the N atom of the INA ligand and the O atom of the second water mol­ecule in the axial positions. An intra­molecular O—H⋯O hydrogen bond between the monodentate-coordinated carboxyl group and a coordinated water mol­ecule results in a six-membered ring with an envelope conformation. The dihedral angles between the carboxyl groups and the adjacent benzene rings are 4.29 (10)° for the monodentate ligand and 2.31 (13)° for the bidentate ligand, while the two benzene rings are oriented at a dihedral angle of 65.02 (5)°. The dihedral angles between the pyridine and benzene rings are 11.21 (5)° for the monodentate ligand and 74.60 (5)° for the bidentate ligand. In the crystal structure, inter­molecular O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds link the mol­ecules into a supra­molecular structure.

Related literature

For general background, see: Adiwidjaja et al. (1978[Adiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079-3083.]); Amiraslanov et al. (1979[Amiraslanov, I. R., Mamedov, Kh. S., Movsumov, E. M., Musaev, F. N. & Nadzhafov, G. N. (1979). Zh. Strukt. Khim. 20, 1075-1080.]); Antolini et al. (1982[Antolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391-1395.]); Antsyshkina et al. (1980[Antsyshkina, A. S., Chiragov, F. M. & Poray-Koshits, M. A. (1980). Koord. Khim. 15, 1098-1103.]); Bigoli et al. (1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]); Catterick et al. (1974[Catterick, J., Hursthouse, M. B., New, D. B. & Thorhton, P. (1974). J. Chem. Soc. Chem. Commun. pp. 843-844.]); Chen & Chen (2002[Chen, H. J. & Chen, X. M. (2002). Inorg. Chim. Acta, 329, 13-21.]); Hauptmann et al. (2000[Hauptmann, R., Kondo, M. & Kitagawa, S. (2000). Z. Kristallogr. New Cryst. Struct. 215, 169-172.]); Krishnamachari (1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]); Shnulin et al. (1981[Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409-1416.]). For related structures, see: Hökelek et al. (1995[Hökelek, T., Necefoğlu, H. & Balcı, M. (1995). Acta Cryst. C51, 2020-2023.], 1997[Hökelek, T., Budak, K. & Necefoğlu, H. (1997). Acta Cryst. C53, 1049-1051.], 2007[Hökelek, T., Çaylak, N. & Necefoğlu, H. (2007). Acta Cryst. E63, m2561-m2562.], 2008[Hökelek, T., Çaylak, N. & Necefoğlu, H. (2008). Acta Cryst. E64, m505-m506.]); Hökelek & Necefoğlu (1996[Hökelek, T. & Necefoğlu, H. (1996). Acta Cryst. C52, 1128-1131.], 1997[Hökelek, T. & Necefoğlu, H. (1997). Acta Cryst. C53, 187-189.], 2007[Hökelek, T. & Necefoğlu, H. (2007). Acta Cryst. E63, m821-m823.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C9H10NO2)2(C6H6N2O)(H2O)2]

  • Mr = 545.45

  • Triclinic, [P \overline 1]

  • a = 6.85550 (10) Å

  • b = 8.1028 (2) Å

  • c = 22.4642 (3) Å

  • α = 90.9180 (10)°

  • β = 92.965 (2)°

  • γ = 93.230 (2)°

  • V = 1243.98 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.74 mm−1

  • T = 100 K

  • 0.50 × 0.30 × 0.16 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.764, Tmax = 0.884

  • 21784 measured reflections

  • 6167 independent reflections

  • 5279 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.074

  • S = 1.04

  • 6167 reflections

  • 353 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O1 2.0397 (10)
Co1—O3 2.1845 (11)
Co1—O4 2.1445 (11)
Co1—O6 2.0410 (11)
Co1—O7 2.1490 (10)
Co1—N3 2.1314 (12)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H41⋯O3i 0.857 (18) 2.189 (19) 3.0426 (17) 173.8 (17)
N4—H42⋯O4ii 0.88 (2) 1.96 (2) 2.8101 (17) 161.9 (16)
O6—H61⋯N1iii 0.918 (17) 1.956 (18) 2.8494 (17) 163.9 (17)
O6—H62⋯O2iv 0.90 (2) 1.77 (2) 2.6640 (15) 172 (2)
O7—H71⋯O2 0.914 (15) 1.774 (16) 2.6532 (15) 160.5 (15)
O7—H72⋯O5v 0.879 (18) 1.875 (18) 2.7478 (15) 171.6 (17)
Symmetry codes: (i) x-1, y+1, z; (ii) x, y+1, z; (iii) x-1, y-1, z; (iv) x-1, y, z; (v) x+1, y-1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Nicotinamide (NA) is one form of niacin. A deficiency of this vitamin leads to loss of copper from the body, known as pellagra disease. Victims of pellagra show unusually high serum and urinary copper levels (Krishnamachari, 1974). The nicotinic acid derivative N,N-diethylnicotinamide (DENA) is an important respiratory stimulant (Bigoli et al., 1972). Transition metal complexes with biochemical molecules show interesting physical and/or chemical properties, through which they may find applications in biological systems (Antolini et al., 1982). Some benzoic acid derivatives, such as 4-aminobenzoic acid, have been extensively reported in coordination chemistry, as bifunctional organic ligands, due to the varieties of their coordination modes (Chen & Chen, 2002; Amiraslanov et al., 1979; Hauptmann et al., 2000).

The structure–function–coordination relationships of the arylcarboxylate ion in CoII complexes of benzoic acid derivatives may also change depending on the nature and position of the substituted groups on the benzene ring, the nature of the additional ligand molecule or solvent, and the pH and temperature of synthesis, as in ZnII complexes (Shnulin et al., 1981; Antsyshkina et al., 1980; Adiwidjaja et al., 1978). When pyridine and its derivatives are used instead of water molecules, the structure is completely different (Catterick et al., 1974).

The structure determination of the title compound, (I), a cobalt complex with two 4-dimethylaminobenzoate (DMAB) and one isonicotinamide (INA) ligands and two water molecules, was undertaken in order to determine the properties of the ligands and also to compare the results obtained with those reported previously.

In the monomeric title complex, (I), the Co atom is surrounded by two DMAB and INA ligands and two water molecules. One of the DMAB ions acts as a bidentate ligand, while the other and INA are monodentate ligands (Fig. 1). The four O atoms (O1, O3, O4 and O6 atoms) in the equatorial plane around the Co atom form a highly distorted square-planar arrangement, while the distorted octahedral coordination is completed by the N atom of the INA ligand (N1) and the O atom of the water molecule (O7) in the axial positions (Table 1 and Fig. 1).

The near equality of the C1—O1 [1.2682 (17) Å], C1—O2 [1.2628 (17) Å], C10—O3 [1.2743 (18) Å] and C10—O4 [1.2716 (18) Å] bonds in the carboxylate group indicates a delocalized bonding arrangement, rather than localized single and double bonds, and may be compared with the corresponding distances: 1.256 (6) and 1.245 (6) Å in [Mn(DENA)2(C7H4ClO2)2(H2O)2], (II) (Hökelek et al., 2008), 1.265 (6) and 1.275 (6) Å in [Mn(C9H10NO2)2(H2O)4]. 2(H2O), (III) (Hökelek & Necefoğlu, 2007), 1.260 (4) and 1.252 (4) Å in [Zn(DENA)2(C7H4FO2)2(H2O)2], (IV) (Hökelek et al., 2007), 1.259 (9) and 1.273 (9) Å in Cu2(DENA)2(C6H5COO)4, (V) (Hökelek et al., 1995), 1.279 (4) and 1.246 (4) Å in [Zn2(DENA)2(C7H5O3)4]. 2H2O, (VI) (Hökelek & Necefoğlu, 1996), 1.251 (6) and 1.254 (7) Å in [Co(DENA)2(C7H5O3)2(H2O)2], (VII) (Hökelek & Necefoğlu, 1997) and 1.278 (3) and 1.246 (3) Å in [Cu(DENA)2(C7H4NO4)2(H2O)2], (VIII) (Hökelek et al., 1997). In (I), the average Co—O bond length is 2.1117 (11) Å and the Co atom is displaced out of the least-squares planes of the carboxylate groups (O1/C1/O2) and (O3/O4/C10) by -0.536 (1) Å and -0.012 (1) Å, respectively. The dihedral angle between the planar carboxylate groups and the adjacent benzene rings A (C2–C7) and B (C11–C16) are 4.29 (10)° and 2.31 (13)°, respectively, while those between rings A, B and C (N3/C19–C23) are A/B = 65.02 (5), A/C = 11.21 (5) and B/C = 74.60 (5)°. Intramolecular C—H···O hydrogen bond (Table 2) results in the formation of a six-membered ring D (Co1/O1/O2/O7/C1/H71) adopting envelope conformation, with atom Co1 displaced by 0.635 (1) Å from the plane of the other ring atoms.

In the crystal structure, strong intermolecular O—H···O, O—H···N and N—H···O hydrogen bonds (Table 2) link the molecules into a supramolecular structure, in which they may be effective in the stabilization of the structure.

Related literature top

For general background, see: Adiwidjaja et al. (1978); Amiraslanov et al. (1979); Antolini et al. (1982); Antsyshkina et al. (1980); Bigoli et al. (1972); Catterick et al. (1974); Chen & Chen (2002); Hauptmann et al. (2000); Krishnamachari (1974); Shnulin et al. (1981). For related structures, see: Hökelek et al. (1995, 1997, 2007, 2008); Hökelek & Necefoğlu (1996, 1997, 2007).

Experimental top

The title compound was prepared by the reaction of CoSO4.H2O (1.40 g, 5 mmol) in H2O (30 ml) and INA (1.22 g, 10 mmol) in H2O (20 ml) with sodium 4-dimethylaminobenzoate (1.65 g, 10 mmol) in H2O (50 ml). The mixture was filtered and set aside to crystallize at ambient temperature for one week, giving brown single crystals.

Refinement top

H atoms of water molecules and NH2 group were located in difference Fourier maps and refined isotropically, with restraints of O6—H61 = 0.919 (14), O6—H62 = 0.903 (16), O7—H71 = 0.910 (14), O7—H72 = 0.881 (15) Å and H61—O6—H62 = 105.6 (18) and H71—O7—H72 = 105.6 (18)°. The remaining H atoms were positioned geometrically with C—H = 0.93 and 0.96 Å, for aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bond is shown as dashed line.
Diaquabis[4-(dimethylamino)benzoato]-κ2O,O';κO- (isonicotinamide-κN1)cobalt(II) top
Crystal data top
[Co(C9H10NO2)2(C6H6N2O)(H2O)2]Z = 2
Mr = 545.45F(000) = 570
Triclinic, P1Dx = 1.456 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8555 (1) ÅCell parameters from 9963 reflections
b = 8.1028 (2) Åθ = 2.5–28.3°
c = 22.4642 (3) ŵ = 0.74 mm1
α = 90.918 (1)°T = 100 K
β = 92.965 (2)°Block, brown
γ = 93.230 (2)°0.50 × 0.30 × 0.16 mm
V = 1243.98 (4) Å3
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
6167 independent reflections
Radiation source: fine-focus sealed tube5279 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ϕ and ω scansθmax = 28.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 96
Tmin = 0.764, Tmax = 0.884k = 1010
21784 measured reflectionsl = 2729
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.033P)2 + 0.378P]
where P = (Fo2 + 2Fc2)/3
6167 reflections(Δ/σ)max = 0.001
353 parametersΔρmax = 0.43 e Å3
6 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Co(C9H10NO2)2(C6H6N2O)(H2O)2]γ = 93.230 (2)°
Mr = 545.45V = 1243.98 (4) Å3
Triclinic, P1Z = 2
a = 6.8555 (1) ÅMo Kα radiation
b = 8.1028 (2) ŵ = 0.74 mm1
c = 22.4642 (3) ÅT = 100 K
α = 90.918 (1)°0.50 × 0.30 × 0.16 mm
β = 92.965 (2)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
6167 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5279 reflections with I > 2σ(I)
Tmin = 0.764, Tmax = 0.884Rint = 0.046
21784 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0306 restraints
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.43 e Å3
6167 reflectionsΔρmin = 0.38 e Å3
353 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.43320 (3)0.02268 (2)0.277708 (9)0.00947 (6)
O10.60678 (15)0.17803 (12)0.33279 (5)0.0131 (2)
O20.86084 (15)0.02285 (12)0.35203 (5)0.0149 (2)
O30.61788 (15)0.00803 (12)0.20163 (5)0.0130 (2)
O40.31810 (15)0.10110 (12)0.19727 (5)0.0131 (2)
O50.30534 (15)0.58077 (12)0.23291 (5)0.0147 (2)
O60.21656 (16)0.06931 (13)0.32895 (5)0.0148 (2)
H610.240 (3)0.141 (2)0.3594 (8)0.039 (6)*
H620.100 (3)0.028 (3)0.3359 (10)0.048 (7)*
O70.57303 (16)0.18934 (13)0.31208 (5)0.0134 (2)
H710.688 (2)0.137 (2)0.3264 (9)0.036 (6)*
H720.605 (3)0.258 (2)0.2840 (8)0.041 (6)*
N11.23506 (18)0.74180 (15)0.43479 (6)0.0133 (3)
N20.5720 (3)0.30713 (19)0.06317 (7)0.0288 (4)
N30.25998 (18)0.22383 (15)0.25346 (5)0.0107 (2)
N40.0640 (2)0.76078 (16)0.20689 (6)0.0151 (3)
H410.147 (3)0.836 (2)0.2044 (8)0.018 (5)*
H420.060 (3)0.784 (2)0.1996 (9)0.024 (5)*
C10.7817 (2)0.15986 (18)0.35163 (6)0.0112 (3)
C20.8986 (2)0.31004 (17)0.37515 (6)0.0109 (3)
C30.8160 (2)0.46310 (18)0.37877 (7)0.0134 (3)
H30.68510.47130.36670.016*
C40.9243 (2)0.60278 (18)0.39981 (7)0.0145 (3)
H40.86460.70270.40250.017*
C51.1227 (2)0.59587 (17)0.41723 (6)0.0113 (3)
C61.2061 (2)0.44248 (18)0.41310 (7)0.0136 (3)
H61.33760.43420.42430.016*
C71.0954 (2)0.30329 (18)0.39263 (7)0.0129 (3)
H71.15400.20270.39050.015*
C81.1348 (2)0.86392 (19)0.46908 (7)0.0171 (3)
H8A1.22250.95870.47810.026*
H8B1.09420.81590.50550.026*
H8C1.02230.89710.44610.026*
C91.4336 (2)0.7219 (2)0.45897 (9)0.0234 (4)
H9A1.49870.82880.46650.035*
H9B1.50390.66150.43080.035*
H9C1.42890.66240.49550.035*
C100.4778 (2)0.07098 (17)0.17208 (7)0.0115 (3)
C110.5002 (2)0.12862 (18)0.11039 (7)0.0142 (3)
C120.3496 (2)0.21833 (19)0.07857 (7)0.0180 (3)
H120.23170.24040.09640.022*
C130.3706 (3)0.2755 (2)0.02120 (8)0.0226 (4)
H130.26630.33370.00080.027*
C140.5478 (3)0.2470 (2)0.00686 (7)0.0212 (4)
C150.7001 (3)0.1550 (2)0.02534 (8)0.0221 (4)
H150.81890.13330.00800.027*
C160.6747 (2)0.09685 (19)0.08242 (7)0.0175 (3)
H160.77660.03500.10260.021*
C170.7573 (3)0.2808 (3)0.09026 (9)0.0377 (5)
H17A0.75320.33970.12780.057*
H17B0.85960.32020.06440.057*
H17C0.78240.16480.09670.057*
C180.4093 (3)0.3871 (2)0.09781 (8)0.0355 (5)
H18A0.45090.41760.13640.053*
H18B0.30580.31250.10220.053*
H18C0.36310.48440.07780.053*
C190.3251 (2)0.38257 (18)0.25972 (7)0.0127 (3)
H190.45550.40590.27210.015*
C200.2078 (2)0.51366 (18)0.24869 (7)0.0130 (3)
H200.25960.62210.25250.016*
C210.0118 (2)0.48028 (17)0.23182 (6)0.0103 (3)
C220.0572 (2)0.31584 (17)0.22533 (7)0.0114 (3)
H220.18790.28910.21430.014*
C230.0708 (2)0.19348 (17)0.23553 (7)0.0118 (3)
H230.02430.08410.22970.014*
C240.1314 (2)0.61288 (17)0.22363 (7)0.0117 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.00738 (11)0.00874 (10)0.01243 (11)0.00157 (7)0.00073 (7)0.00010 (7)
O10.0090 (5)0.0130 (5)0.0173 (6)0.0029 (4)0.0020 (4)0.0014 (4)
O20.0098 (5)0.0111 (5)0.0239 (6)0.0029 (4)0.0005 (4)0.0000 (4)
O30.0104 (5)0.0124 (5)0.0160 (6)0.0000 (4)0.0006 (4)0.0011 (4)
O40.0103 (5)0.0139 (5)0.0152 (6)0.0006 (4)0.0024 (4)0.0006 (4)
O50.0076 (5)0.0121 (5)0.0246 (6)0.0011 (4)0.0016 (4)0.0013 (4)
O60.0102 (6)0.0172 (5)0.0182 (6)0.0052 (4)0.0041 (5)0.0056 (4)
O70.0101 (6)0.0119 (5)0.0185 (6)0.0029 (4)0.0006 (5)0.0002 (4)
N10.0110 (6)0.0120 (6)0.0166 (7)0.0018 (5)0.0017 (5)0.0023 (5)
N20.0426 (10)0.0311 (8)0.0138 (7)0.0097 (7)0.0043 (7)0.0034 (6)
N30.0099 (6)0.0116 (6)0.0106 (6)0.0007 (5)0.0014 (5)0.0004 (5)
N40.0078 (7)0.0108 (6)0.0270 (8)0.0029 (5)0.0003 (6)0.0032 (5)
C10.0111 (7)0.0132 (7)0.0095 (7)0.0016 (6)0.0014 (6)0.0006 (5)
C20.0106 (7)0.0130 (7)0.0094 (7)0.0010 (5)0.0013 (6)0.0011 (5)
C30.0092 (7)0.0160 (7)0.0151 (8)0.0033 (6)0.0014 (6)0.0006 (6)
C40.0138 (8)0.0121 (7)0.0179 (8)0.0041 (6)0.0006 (6)0.0008 (6)
C50.0126 (7)0.0122 (7)0.0092 (7)0.0004 (6)0.0020 (6)0.0012 (5)
C60.0100 (7)0.0155 (7)0.0154 (8)0.0026 (6)0.0018 (6)0.0015 (6)
C70.0119 (7)0.0122 (7)0.0148 (8)0.0043 (6)0.0003 (6)0.0008 (6)
C80.0209 (9)0.0145 (7)0.0159 (8)0.0026 (6)0.0009 (7)0.0032 (6)
C90.0155 (8)0.0168 (8)0.0368 (11)0.0015 (6)0.0093 (8)0.0055 (7)
C100.0118 (7)0.0080 (6)0.0150 (8)0.0027 (5)0.0007 (6)0.0019 (5)
C110.0161 (8)0.0127 (7)0.0141 (8)0.0031 (6)0.0013 (6)0.0010 (6)
C120.0164 (8)0.0199 (8)0.0177 (8)0.0020 (6)0.0016 (7)0.0001 (6)
C130.0263 (10)0.0228 (8)0.0182 (9)0.0021 (7)0.0046 (7)0.0023 (7)
C140.0322 (10)0.0190 (8)0.0133 (8)0.0090 (7)0.0016 (7)0.0016 (6)
C150.0234 (9)0.0249 (9)0.0194 (9)0.0053 (7)0.0087 (7)0.0028 (7)
C160.0187 (8)0.0171 (7)0.0171 (8)0.0016 (6)0.0025 (7)0.0015 (6)
C170.0527 (14)0.0452 (12)0.0177 (10)0.0161 (10)0.0122 (9)0.0011 (8)
C180.0521 (14)0.0385 (11)0.0167 (9)0.0174 (10)0.0056 (9)0.0080 (8)
C190.0090 (7)0.0134 (7)0.0155 (8)0.0002 (6)0.0003 (6)0.0027 (6)
C200.0116 (7)0.0098 (7)0.0175 (8)0.0018 (5)0.0002 (6)0.0012 (6)
C210.0093 (7)0.0120 (7)0.0101 (7)0.0022 (5)0.0024 (6)0.0011 (5)
C220.0089 (7)0.0128 (7)0.0123 (7)0.0002 (5)0.0005 (6)0.0001 (5)
C230.0120 (7)0.0099 (7)0.0133 (7)0.0003 (5)0.0007 (6)0.0008 (5)
C240.0116 (7)0.0103 (7)0.0132 (7)0.0015 (5)0.0010 (6)0.0019 (5)
Geometric parameters (Å, º) top
Co1—O12.0397 (10)C7—C21.390 (2)
Co1—O32.1845 (11)C7—C61.382 (2)
Co1—O42.1445 (11)C7—H70.9300
Co1—O62.0410 (11)C8—H8A0.9600
Co1—O72.1490 (10)C8—H8B0.9600
Co1—N32.1314 (12)C8—H8C0.9600
Co1—C102.5187 (15)C9—H9A0.9600
O1—C11.2682 (17)C9—H9B0.9600
O2—C11.2628 (17)C9—H9C0.9600
O3—C101.2743 (18)C10—C111.473 (2)
O4—C101.2716 (18)C11—C121.388 (2)
O5—C241.2353 (18)C11—C161.393 (2)
O6—H610.919 (14)C12—C131.380 (2)
O6—H620.903 (16)C12—H120.9300
O7—H710.910 (14)C13—C141.407 (2)
O7—H720.881 (15)C13—H130.9300
N1—C51.4135 (18)C15—C141.409 (3)
N1—C81.4668 (19)C15—H150.9300
N1—C91.457 (2)C16—C151.382 (2)
N2—C141.370 (2)C16—H160.9300
N2—C171.444 (3)C17—H17A0.9600
N2—C181.443 (3)C17—H17B0.9600
N3—C191.3405 (19)C17—H17C0.9600
N3—C231.3456 (19)C18—H18A0.9600
N4—C241.3269 (19)C18—H18B0.9600
N4—H410.857 (19)C18—H18C0.9600
N4—H420.89 (2)C19—H190.9300
C1—C21.492 (2)C20—C191.386 (2)
C2—C31.395 (2)C20—C211.387 (2)
C3—H30.9300C20—H200.9300
C4—C31.381 (2)C22—C211.392 (2)
C4—C51.401 (2)C22—C231.375 (2)
C4—H40.9300C22—H220.9300
C6—C51.401 (2)C23—H230.9300
C6—H60.9300C24—C211.503 (2)
O1—Co1—O3100.06 (4)C5—C4—H4119.6
O1—Co1—O4159.45 (4)O5—C24—N4122.77 (14)
O1—Co1—O6105.47 (5)O5—C24—C21119.20 (13)
O1—Co1—O791.43 (4)N4—C24—C21118.02 (13)
O1—Co1—N389.64 (4)C4—C3—C2121.51 (14)
O1—Co1—C10130.10 (5)C4—C3—H3119.2
O3—Co1—C1030.39 (4)C2—C3—H3119.2
O4—Co1—O794.57 (4)N1—C8—H8A109.5
O4—Co1—O360.70 (4)N1—C8—H8B109.5
O4—Co1—C1030.31 (4)H8A—C8—H8B109.5
O6—Co1—O3152.10 (4)N1—C8—H8C109.5
O6—Co1—O494.88 (4)H8A—C8—H8C109.5
O6—Co1—O781.01 (4)H8B—C8—H8C109.5
O6—Co1—N390.00 (4)C19—C20—C21118.85 (13)
O6—Co1—C10124.14 (5)C19—C20—H20120.6
O7—Co1—O387.37 (4)C21—C20—H20120.6
O7—Co1—C1091.22 (4)C15—C16—C11121.55 (16)
N3—Co1—O3101.34 (4)C15—C16—H16119.2
N3—Co1—O487.53 (4)C11—C16—H16119.2
N3—Co1—O7170.90 (4)C23—C22—C21118.95 (14)
N3—Co1—C1095.00 (5)C23—C22—H22120.5
C1—O1—Co1127.70 (9)C21—C22—H22120.5
C10—O3—Co189.46 (9)N3—C19—C20123.23 (14)
C10—O4—Co191.35 (9)N3—C19—H19118.4
Co1—O7—H7198.5 (13)C20—C19—H19118.4
Co1—O7—H72113.3 (14)C12—C13—C14120.86 (16)
H71—O7—H72105.6 (18)C12—C13—H13119.6
Co1—O6—H61122.1 (13)C14—C13—H13119.6
Co1—O6—H62129.3 (14)N3—C23—C22123.42 (13)
H61—O6—H62105.6 (18)N3—C23—H23118.3
C19—N3—C23117.19 (12)C22—C23—H23118.3
C19—N3—Co1123.17 (10)C20—C21—C22118.31 (13)
C23—N3—Co1119.40 (9)C20—C21—C24123.09 (13)
C5—N1—C9116.82 (12)C22—C21—C24118.51 (13)
C5—N1—C8116.04 (12)C4—C5—C6117.65 (13)
C9—N1—C8111.97 (13)C4—C5—N1120.25 (13)
C24—N4—H42123.3 (12)C6—C5—N1121.99 (14)
C24—N4—H41116.2 (12)C14—N2—C18120.59 (16)
H42—N4—H41120.5 (17)C14—N2—C17120.27 (17)
O4—C10—O3118.49 (14)C18—N2—C17119.00 (15)
O4—C10—C11120.43 (13)C16—C15—C14120.68 (16)
O3—C10—C11121.07 (13)C16—C15—H15119.7
O4—C10—Co158.34 (8)C14—C15—H15119.7
O3—C10—Co160.14 (8)N2—C14—C13121.32 (17)
C11—C10—Co1178.69 (11)N2—C14—C15121.24 (17)
O2—C1—O1123.86 (13)C13—C14—C15117.43 (15)
O2—C1—C2118.69 (13)N1—C9—H9A109.5
O1—C1—C2117.45 (12)N1—C9—H9B109.5
C6—C7—C2121.54 (14)H9A—C9—H9B109.5
C6—C7—H7119.2N1—C9—H9C109.5
C2—C7—H7119.2H9A—C9—H9C109.5
C12—C11—C16117.82 (15)H9B—C9—H9C109.5
C12—C11—C10121.25 (14)N2—C17—H17A109.5
C16—C11—C10120.92 (14)N2—C17—H17B109.5
C7—C2—C3117.57 (13)H17A—C17—H17B109.5
C7—C2—C1121.09 (13)N2—C17—H17C109.5
C3—C2—C1121.31 (13)H17A—C17—H17C109.5
C7—C6—C5120.88 (14)H17B—C17—H17C109.5
C7—C6—H6119.6N2—C18—H18A109.5
C5—C6—H6119.6N2—C18—H18B109.5
C13—C12—C11121.64 (16)H18A—C18—H18B109.5
C13—C12—H12119.2N2—C18—H18C109.5
C11—C12—H12119.2H18A—C18—H18C109.5
C3—C4—C5120.84 (14)H18B—C18—H18C109.5
C3—C4—H4119.6
O1—Co1—O3—C10172.09 (8)C6—C7—C2—C30.2 (2)
O6—Co1—O3—C1031.83 (13)C6—C7—C2—C1178.40 (14)
N3—Co1—O3—C1080.42 (8)O2—C1—C2—C75.3 (2)
O4—Co1—O3—C100.19 (8)O1—C1—C2—C7175.29 (14)
O7—Co1—O3—C1096.92 (8)O2—C1—C2—C3176.59 (14)
O1—Co1—O4—C1021.94 (16)O1—C1—C2—C32.8 (2)
O6—Co1—O4—C10165.93 (8)C2—C7—C6—C50.3 (2)
N3—Co1—O4—C10104.28 (8)C16—C11—C12—C130.3 (2)
O7—Co1—O4—C1084.59 (8)C10—C11—C12—C13178.73 (14)
O3—Co1—O4—C100.19 (8)C5—C4—C3—C21.3 (2)
O6—Co1—O1—C1112.48 (12)C7—C2—C3—C41.0 (2)
N3—Co1—O1—C1157.62 (12)C1—C2—C3—C4179.19 (14)
O4—Co1—O1—C175.66 (17)C12—C11—C16—C151.3 (2)
O7—Co1—O1—C131.42 (12)C10—C11—C16—C15177.74 (14)
O3—Co1—O1—C156.16 (12)C23—N3—C19—C200.0 (2)
C10—Co1—O1—C161.38 (13)Co1—N3—C19—C20174.44 (11)
O1—Co1—N3—C1921.32 (12)C21—C20—C19—N31.8 (2)
O6—Co1—N3—C19126.79 (12)C11—C12—C13—C141.1 (2)
O4—Co1—N3—C19138.32 (12)C19—N3—C23—C222.0 (2)
O3—Co1—N3—C1978.86 (12)Co1—N3—C23—C22172.64 (11)
C10—Co1—N3—C19108.92 (12)C21—C22—C23—N32.2 (2)
O1—Co1—N3—C23152.97 (11)C19—C20—C21—C221.5 (2)
O6—Co1—N3—C2347.50 (11)C19—C20—C21—C24174.91 (14)
O4—Co1—N3—C2347.38 (11)C23—C22—C21—C200.3 (2)
O3—Co1—N3—C23106.84 (11)C23—C22—C21—C24176.92 (13)
C10—Co1—N3—C2376.79 (11)O5—C24—C21—C20150.39 (15)
Co1—O4—C10—O30.33 (13)N4—C24—C21—C2029.2 (2)
Co1—O4—C10—C11179.46 (12)O5—C24—C21—C2226.1 (2)
Co1—O3—C10—O40.32 (13)N4—C24—C21—C22154.32 (14)
Co1—O3—C10—C11179.45 (12)C3—C4—C5—C60.6 (2)
O1—Co1—C10—O4170.13 (7)C3—C4—C5—N1175.64 (14)
O6—Co1—C10—O417.01 (10)C7—C6—C5—C40.1 (2)
N3—Co1—C10—O476.38 (8)C7—C6—C5—N1176.35 (14)
O7—Co1—C10—O496.97 (8)C9—N1—C5—C4172.91 (14)
O3—Co1—C10—O4179.67 (13)C8—N1—C5—C437.38 (19)
O1—Co1—C10—O310.20 (10)C9—N1—C5—C611.0 (2)
O6—Co1—C10—O3162.65 (7)C8—N1—C5—C6146.50 (14)
N3—Co1—C10—O3103.95 (8)C11—C16—C15—C140.9 (2)
O4—Co1—C10—O3179.67 (13)C18—N2—C14—C136.5 (2)
O7—Co1—C10—O382.70 (8)C17—N2—C14—C13177.97 (16)
Co1—O1—C1—O219.4 (2)C18—N2—C14—C15173.96 (16)
Co1—O1—C1—C2161.23 (10)C17—N2—C14—C151.6 (2)
O4—C10—C11—C120.8 (2)C12—C13—C14—N2178.18 (15)
O3—C10—C11—C12178.35 (13)C12—C13—C14—C151.4 (2)
O4—C10—C11—C16179.76 (13)C16—C15—C14—N2179.16 (15)
O3—C10—C11—C160.6 (2)C16—C15—C14—C130.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H41···O3i0.857 (18)2.189 (19)3.0426 (17)173.8 (17)
N4—H42···O4ii0.88 (2)1.96 (2)2.8101 (17)161.9 (16)
O6—H61···N1iii0.92 (2)1.96 (2)2.8494 (17)164 (2)
O6—H62···O2iv0.90 (2)1.77 (2)2.6640 (15)172 (2)
O7—H71···O20.91 (2)1.77 (2)2.6532 (15)161 (2)
O7—H72···O5v0.88 (2)1.88 (2)2.7478 (15)172 (2)
Symmetry codes: (i) x1, y+1, z; (ii) x, y+1, z; (iii) x1, y1, z; (iv) x1, y, z; (v) x+1, y1, z.

Experimental details

Crystal data
Chemical formula[Co(C9H10NO2)2(C6H6N2O)(H2O)2]
Mr545.45
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.8555 (1), 8.1028 (2), 22.4642 (3)
α, β, γ (°)90.918 (1), 92.965 (2), 93.230 (2)
V3)1243.98 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.74
Crystal size (mm)0.50 × 0.30 × 0.16
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.764, 0.884
No. of measured, independent and
observed [I > 2σ(I)] reflections
21784, 6167, 5279
Rint0.046
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.074, 1.04
No. of reflections6167
No. of parameters353
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.38

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Co1—O12.0397 (10)Co1—O62.0410 (11)
Co1—O32.1845 (11)Co1—O72.1490 (10)
Co1—O42.1445 (11)Co1—N32.1314 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H41···O3i0.857 (18)2.189 (19)3.0426 (17)173.8 (17)
N4—H42···O4ii0.88 (2)1.96 (2)2.8101 (17)161.9 (16)
O6—H61···N1iii0.918 (17)1.956 (18)2.8494 (17)163.9 (17)
O6—H62···O2iv0.90 (2)1.77 (2)2.6640 (15)172 (2)
O7—H71···O20.914 (15)1.774 (16)2.6532 (15)160.5 (15)
O7—H72···O5v0.879 (18)1.875 (18)2.7478 (15)171.6 (17)
Symmetry codes: (i) x1, y+1, z; (ii) x, y+1, z; (iii) x1, y1, z; (iv) x1, y, z; (v) x+1, y1, z.
 

Acknowledgements

The authors are indebted to Anadolu University and to the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of the X-ray diffractometer.

References

First citationAdiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079–3083.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationAmiraslanov, I. R., Mamedov, Kh. S., Movsumov, E. M., Musaev, F. N. & Nadzhafov, G. N. (1979). Zh. Strukt. Khim. 20, 1075–1080.  CAS Google Scholar
First citationAntolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391–1395.  CSD CrossRef CAS Web of Science Google Scholar
First citationAntsyshkina, A. S., Chiragov, F. M. & Poray-Koshits, M. A. (1980). Koord. Khim. 15, 1098–1103.  Google Scholar
First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationCatterick, J., Hursthouse, M. B., New, D. B. & Thorhton, P. (1974). J. Chem. Soc. Chem. Commun. pp. 843–844.  CrossRef Web of Science Google Scholar
First citationChen, H. J. & Chen, X. M. (2002). Inorg. Chim. Acta, 329, 13–21.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHauptmann, R., Kondo, M. & Kitagawa, S. (2000). Z. Kristallogr. New Cryst. Struct. 215, 169–172.  CAS Google Scholar
First citationHökelek, T., Budak, K. & Necefoğlu, H. (1997). Acta Cryst. C53, 1049–1051.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T., Çaylak, N. & Necefoğlu, H. (2007). Acta Cryst. E63, m2561–m2562.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Çaylak, N. & Necefoğlu, H. (2008). Acta Cryst. E64, m505–m506.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T. & Necefoğlu, H. (1996). Acta Cryst. C52, 1128–1131.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T. & Necefoğlu, H. (1997). Acta Cryst. C53, 187–189.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T. & Necefoğlu, H. (2007). Acta Cryst. E63, m821–m823.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Necefoğlu, H. & Balcı, M. (1995). Acta Cryst. C51, 2020–2023.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409–1416.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages m627-m628
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds