organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-Meth­­oxy-1,1-di­phenyl­but-2-yne

CROSSMARK_Color_square_no_text.svg

aInstitut für Organische Chemie, TU Bergakademie Freiberg, Leipziger Strasse 29, D-09596 Freiberg/Sachsen, Germany
*Correspondence e-mail: edwin.weber@chemie-tu.freiberg.de

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 18 January 2018; accepted 12 March 2018; online 6 April 2018)

In the title compound, C17H16O, the phenyl rings are twisted relative to each other at an angle of 85.9 (1)°. The crystal structure features weak C—H⋯π inter­actions, which connect the mol­ecules into a three-dimensional supra­molecular network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound has been prepared as an inter­mediate for the synthesis of a potential `wheel-and-axle' mol­ecule (Weber, 1996[Weber, E. (1996). In Comprehensive Supramolecular Chemistry, edited by D. D. MacNicol, F. Toda & R. Bishop, Vol. 6, pp. 535-592. Oxford, UK: Wiley.]). Compounds of this latter type are significant crystalline inclusion hosts (Katzsch et al., 2015[Katzsch, F., Gruber, T. & Weber, E. (2015). Cryst. Growth Des. 15, 5047-5061.], 2016[Katzsch, F., Gruber, T. & Weber, E. (2016). J. Mol. Struct. 1114, 48-64.]) and important examples in the course of the development of the concept of crystal engineering (Hart et al., 1984[Hart, H., Lin, L. T.-W. & Ward, D. L. (1984). J. Am. Chem. Soc. 106, 4043-4045.]; Bishop, 2012[Bishop, R. (2012). In Supramolecular Chemistry: From Molecules to Nanomaterials, edited by P. A. Gale & J. W. Steed, p. 3033. Chichester: Wiley.]). Alternative approaches for the synthesis of the title compound have already been reported (Van Rijn et al., 1981[Van Rijn, P. E., Mommers, S., Visser, R. G., Verkruijsse, H. D. & Brandsma, L. (1981). Synthesis, pp. 459-460.]; Kostikov et al., 1996[Kostikov, R. R., Varakin, G. S., Molchanov, A. P. & Oglobin, K. A. (1996). Russ. J. Org. Chem. 32, 31-35.]; Maraval et al., 2008[Maraval, V., Duhayon, C., Coppel, Y. & Chauvin, R. (2008). Eur. J. Org. Chem. pp. 5144-5156.]). One of these, which is closely related to the method we used for the synthesis of the compound, resulted in a yellow oil, while our preparative method yielded the compound as colourless crystals that were used for X-ray crystal structure analysis.

The asymmetric unit of the cell contains one mol­ecule (Fig. 1[link]), the aromatic rings of which are tilted to one another at an angle of 85.9 (1)°. The propyne unit of the mol­ecule slightly deviates from linearity, showing an angle of 177.64 (12)° at C14. In the crystal structure (Fig. 2[link]), the mol­ecules are packed in neither a layered nor a stacked manner, but are connected via C—H⋯π inter­actions (Nishio et al., 2009[Nishio, M., Umezawa, Y., Honda, K., Tsuboyama, S. & Suezawa, H. (2009). CrystEngComm, 11, 1757-1788.]). These involve the aromatic rings and the C≡C triple bond acting as acceptors (Table 1[link]). The oxygen atom of the mol­ecule does not participate in a comparable weak hydrogen bond (Desiraju & Steiner, 1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond. IUCr Monographs on Crystallography, Vol. 9, ch. 3. Oxford University Press.]), probably due to steric hindrance.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C2–C7 and C8–C13 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17ACg1i 0.98 2.81 3.423 (1) 121
C5—H5⋯Cg2ii 0.95 2.73 3.660 (1) 166
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
Perspective view of the title compound, showing 50% probability displacement ellipsoids for non-H atoms.
[Figure 2]
Figure 2
Packing diagram of the title compound viewed down the a axis.

Synthesis and crystallization

Under an atmosphere of argon, 1,1-di­phenyl­prop-2-yne-1-ol (5.2 g, 25 mmol) was added to a stirred suspension of sodium hydride (6.0 g, 250 mmol, 10% in paraffin oil) in dry THF (250 ml). After stirring for 30 min, methyl iodide (21 ml, 330 mmol) was added and the mixture was heated to reflux for 16 h. After cooling, the mixture was quenched with water (50 ml) and extracted with diethyl ether. The combined organic layers were dried over sodium sulfate and the solvents evaporated to dryness, thus giving colourless crystals (5.8 g, 98%) with m.p. 329 K. 1H NMR (500.1 MHz, CDCl3): δ = 1.98 (s, 3H, C—CH3), 3.31 (s, 3H, OCH3), 7.26–7.27 (m, 8H, Ar—H), 7.52–7.54 (m, 2H, Ar—H) p.p.m. 13C NMR (125.8 MHz, CDCl3): δ = 3.7 (C—CH3), 52.1 (O—CH3), 78.6 (Ar—C—C≡C), 80.8 (Ar—C–-O), 85.7 (C≡C—CH3), 126.7 (Ar), 127.3 (Ar), 127.9 (Ar), 143.9 (Ar) p.p.m. IR (KBr): ν = 2230 cm−1 (C≡C); GC—MS: m/z = 237 [M]+. Colourless plates were grown via slow evaporation of solvent from a 1:1 solvent mixture of ethanol and THF.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C17H16O
Mr 236.30
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 9.6483 (2), 10.6060 (3), 13.4332 (4)
β (°) 104.034 (1)
V3) 1333.59 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.50 × 0.46 × 0.35
 
Data collection
Diffractometer Bruker Kappa goniometer with an APEXII CCD area detector
No. of measured, independent and observed [I > 2σ(I)] reflections 13834, 2939, 2582
Rint 0.025
(sin θ/λ)max−1) 0.641
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.112, 1.06
No. of reflections 2939
No. of parameters 165
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.32, −0.31
Computer programs: APEX2 and SAINT-NT (Bruker, 2008[Bruker (2008). APEX2 and SAINT-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT-NT (Bruker, 2008); data reduction: SAINT-NT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

1-Methoxy-1,1-diphenylbut-2-yne top
Crystal data top
C17H16ODx = 1.177 Mg m3
Mr = 236.30Melting point: 329 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.6483 (2) ÅCell parameters from 8020 reflections
b = 10.6060 (3) Åθ = 2.4–33.1°
c = 13.4332 (4) ŵ = 0.07 mm1
β = 104.034 (1)°T = 100 K
V = 1333.59 (6) Å3Irregular, colourless
Z = 40.50 × 0.46 × 0.35 mm
F(000) = 504
Data collection top
Bruker Kappa goniometer with an APEXII CCD area detector
diffractometer
Rint = 0.025
Radiation source: Sealed X-ray tubeθmax = 27.1°, θmin = 2.2°
φ and ω scansh = 1211
13834 measured reflectionsk = 139
2939 independent reflectionsl = 1717
2582 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0503P)2 + 0.6393P]
where P = (Fo2 + 2Fc2)/3
2939 reflections(Δ/σ)max = 0.001
165 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.30 e Å3
0 constraints
Special details top

Refinement. The non-hydrogen atoms were refined anisotropically. The hydrogen atoms were positioned geometrically and refined isotropically using the riding model with C—H = 0.98 Å and Uiso(H) = 1.5 Ueq(C) for methyl groups, and C—H = 0.95 Å and Uiso(H) = 1.2 Ueq(C) for phenyl groups.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.44623 (8)0.10133 (8)0.17564 (6)0.0189 (2)
C10.36399 (11)0.01102 (11)0.21645 (8)0.0148 (2)
C20.24889 (11)0.08676 (11)0.25168 (8)0.0146 (2)
C30.25175 (12)0.21765 (11)0.25575 (9)0.0183 (2)
H30.32300.26290.23260.022*
C40.14980 (13)0.28244 (12)0.29387 (9)0.0221 (3)
H40.15200.37200.29640.027*
C50.04549 (12)0.21788 (12)0.32810 (9)0.0217 (3)
H50.02300.26260.35460.026*
C60.04201 (12)0.08689 (12)0.32339 (9)0.0205 (3)
H60.02950.04180.34640.025*
C70.14275 (12)0.02197 (11)0.28520 (8)0.0176 (2)
H70.13950.06750.28180.021*
C80.29562 (11)0.08338 (11)0.13200 (8)0.0158 (2)
C90.19931 (12)0.03667 (12)0.04470 (9)0.0200 (3)
H90.17790.05090.03940.024*
C100.13505 (13)0.11747 (14)0.03405 (9)0.0245 (3)
H100.06890.08540.09290.029*
C110.16720 (13)0.24534 (14)0.02706 (10)0.0269 (3)
H110.12260.30080.08080.032*
C120.26422 (13)0.29179 (13)0.05828 (10)0.0256 (3)
H120.28730.37900.06250.031*
C130.32831 (12)0.21100 (11)0.13811 (9)0.0200 (3)
H130.39450.24340.19680.024*
C140.45375 (12)0.05219 (11)0.30794 (9)0.0173 (2)
C150.52478 (12)0.09973 (11)0.38375 (9)0.0194 (2)
C160.56975 (13)0.05142 (13)0.14930 (10)0.0246 (3)
H16A0.54190.01890.10130.037*
H16B0.61490.11740.11700.037*
H16C0.63740.02140.21150.037*
C170.61243 (14)0.15804 (13)0.47669 (10)0.0264 (3)
H17A0.67570.09440.51700.040*
H17B0.55030.19290.51770.040*
H17C0.67000.22580.45760.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0169 (4)0.0170 (4)0.0252 (4)0.0001 (3)0.0099 (3)0.0019 (3)
C10.0141 (5)0.0138 (5)0.0163 (5)0.0004 (4)0.0036 (4)0.0010 (4)
C20.0139 (5)0.0168 (5)0.0121 (5)0.0017 (4)0.0013 (4)0.0006 (4)
C30.0171 (5)0.0173 (6)0.0211 (5)0.0008 (4)0.0056 (4)0.0023 (4)
C40.0229 (6)0.0172 (6)0.0265 (6)0.0041 (5)0.0066 (5)0.0011 (5)
C50.0189 (6)0.0262 (6)0.0207 (6)0.0057 (5)0.0063 (4)0.0007 (5)
C60.0176 (5)0.0259 (6)0.0190 (5)0.0022 (4)0.0063 (4)0.0008 (5)
C70.0193 (5)0.0173 (6)0.0160 (5)0.0016 (4)0.0038 (4)0.0001 (4)
C80.0139 (5)0.0190 (6)0.0154 (5)0.0001 (4)0.0052 (4)0.0014 (4)
C90.0184 (5)0.0241 (6)0.0180 (5)0.0032 (4)0.0050 (4)0.0013 (5)
C100.0184 (6)0.0394 (8)0.0152 (5)0.0024 (5)0.0029 (4)0.0026 (5)
C110.0215 (6)0.0366 (7)0.0235 (6)0.0031 (5)0.0068 (5)0.0143 (5)
C120.0229 (6)0.0218 (6)0.0328 (7)0.0006 (5)0.0078 (5)0.0089 (5)
C130.0171 (5)0.0201 (6)0.0226 (6)0.0022 (4)0.0040 (4)0.0013 (5)
C140.0166 (5)0.0163 (5)0.0185 (5)0.0009 (4)0.0035 (4)0.0033 (4)
C150.0204 (5)0.0179 (6)0.0186 (5)0.0014 (4)0.0026 (4)0.0038 (4)
C160.0191 (6)0.0259 (6)0.0325 (7)0.0004 (5)0.0134 (5)0.0008 (5)
C170.0300 (7)0.0262 (7)0.0185 (6)0.0062 (5)0.0025 (5)0.0020 (5)
Geometric parameters (Å, º) top
O1—C161.4248 (14)C9—C101.3855 (17)
O1—C11.4347 (13)C9—H90.9500
C1—C141.4811 (15)C10—C111.389 (2)
C1—C21.5354 (15)C10—H100.9500
C1—C81.5367 (15)C11—C121.3830 (19)
C2—C31.3893 (16)C11—H110.9500
C2—C71.3955 (15)C12—C131.3947 (17)
C3—C41.3951 (16)C12—H120.9500
C3—H30.9500C13—H130.9500
C4—C51.3848 (17)C14—C151.1928 (17)
C4—H40.9500C15—C171.4643 (16)
C5—C61.3908 (18)C16—H16A0.9800
C5—H50.9500C16—H16B0.9800
C6—C71.3871 (16)C16—H16C0.9800
C6—H60.9500C17—H17A0.9800
C7—H70.9500C17—H17B0.9800
C8—C131.3877 (16)C17—H17C0.9800
C8—C91.3984 (15)
C16—O1—C1114.85 (9)C10—C9—H9119.9
O1—C1—C14110.67 (9)C8—C9—H9119.9
O1—C1—C2106.07 (9)C9—C10—C11120.07 (11)
C14—C1—C2107.59 (9)C9—C10—H10120.0
O1—C1—C8109.33 (8)C11—C10—H10120.0
C14—C1—C8112.19 (9)C12—C11—C10119.93 (11)
C2—C1—C8110.81 (8)C12—C11—H11120.0
C3—C2—C7119.23 (10)C10—C11—H11120.0
C3—C2—C1121.74 (10)C11—C12—C13120.21 (12)
C7—C2—C1118.95 (10)C11—C12—H12119.9
C2—C3—C4119.85 (11)C13—C12—H12119.9
C2—C3—H3120.1C8—C13—C12120.12 (11)
C4—C3—H3120.1C8—C13—H13119.9
C5—C4—C3120.81 (11)C12—C13—H13119.9
C5—C4—H4119.6C15—C14—C1177.64 (12)
C3—C4—H4119.6C14—C15—C17179.79 (14)
C4—C5—C6119.36 (11)O1—C16—H16A109.5
C4—C5—H5120.3O1—C16—H16B109.5
C6—C5—H5120.3H16A—C16—H16B109.5
C7—C6—C5120.09 (11)O1—C16—H16C109.5
C7—C6—H6120.0H16A—C16—H16C109.5
C5—C6—H6120.0H16B—C16—H16C109.5
C6—C7—C2120.66 (11)C15—C17—H17A109.5
C6—C7—H7119.7C15—C17—H17B109.5
C2—C7—H7119.7H17A—C17—H17B109.5
C13—C8—C9119.37 (11)C15—C17—H17C109.5
C13—C8—C1122.75 (10)H17A—C17—H17C109.5
C9—C8—C1117.86 (10)H17B—C17—H17C109.5
C10—C9—C8120.29 (12)
C16—O1—C1—C1456.68 (12)C1—C2—C7—C6176.11 (10)
C16—O1—C1—C2173.08 (9)O1—C1—C8—C13116.64 (11)
C16—O1—C1—C867.39 (11)C14—C1—C8—C136.52 (15)
O1—C1—C2—C39.86 (13)C2—C1—C8—C13126.80 (11)
C14—C1—C2—C3108.60 (11)O1—C1—C8—C961.74 (12)
C8—C1—C2—C3128.42 (11)C14—C1—C8—C9175.10 (10)
O1—C1—C2—C7173.33 (9)C2—C1—C8—C954.83 (13)
C14—C1—C2—C768.21 (12)C13—C8—C9—C101.25 (17)
C8—C1—C2—C754.77 (12)C1—C8—C9—C10179.68 (10)
C7—C2—C3—C40.53 (16)C8—C9—C10—C110.66 (17)
C1—C2—C3—C4176.27 (10)C9—C10—C11—C120.46 (18)
C2—C3—C4—C50.15 (17)C10—C11—C12—C130.98 (19)
C3—C4—C5—C60.59 (17)C9—C8—C13—C120.73 (17)
C4—C5—C6—C70.33 (17)C1—C8—C13—C12179.08 (10)
C5—C6—C7—C20.35 (17)C11—C12—C13—C80.38 (18)
C3—C2—C7—C60.78 (16)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2–C7 and C8–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C17—H17A···Cg1i0.982.813.423 (1)121
C5—H5···Cg2ii0.952.733.660 (1)166
Symmetry codes: (i) x+1, y, z+1; (ii) x, y1/2, z+1/2.
 

Funding information

We acknowledge the financial support by the Deutsche Forschungsgemeinschaft (DFG Priority Program 1362 `Porous Metal-Organic Frameworks').

References

First citationBishop, R. (2012). In Supramolecular Chemistry: From Molecules to Nanomaterials, edited by P. A. Gale & J. W. Steed, p. 3033. Chichester: Wiley.  Google Scholar
First citationBruker (2008). APEX2 and SAINT-NT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond. IUCr Monographs on Crystallography, Vol. 9, ch. 3. Oxford University Press.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHart, H., Lin, L. T.-W. & Ward, D. L. (1984). J. Am. Chem. Soc. 106, 4043–4045.  CSD CrossRef CAS Web of Science Google Scholar
First citationKatzsch, F., Gruber, T. & Weber, E. (2015). Cryst. Growth Des. 15, 5047–5061.  Web of Science CSD CrossRef CAS Google Scholar
First citationKatzsch, F., Gruber, T. & Weber, E. (2016). J. Mol. Struct. 1114, 48–64.  Web of Science CSD CrossRef CAS Google Scholar
First citationKostikov, R. R., Varakin, G. S., Molchanov, A. P. & Oglobin, K. A. (1996). Russ. J. Org. Chem. 32, 31–35.  Google Scholar
First citationMaraval, V., Duhayon, C., Coppel, Y. & Chauvin, R. (2008). Eur. J. Org. Chem. pp. 5144–5156.  Web of Science CSD CrossRef Google Scholar
First citationNishio, M., Umezawa, Y., Honda, K., Tsuboyama, S. & Suezawa, H. (2009). CrystEngComm, 11, 1757–1788.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVan Rijn, P. E., Mommers, S., Visser, R. G., Verkruijsse, H. D. & Brandsma, L. (1981). Synthesis, pp. 459–460.  CrossRef Google Scholar
First citationWeber, E. (1996). In Comprehensive Supramolecular Chemistry, edited by D. D. MacNicol, F. Toda & R. Bishop, Vol. 6, pp. 535–592. Oxford, UK: Wiley.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds