To read this content please select one of the options below:

Reduction of hole misalignment in turbocharger center housing

G. Sundaramali (Department of Manufacturing Engineering, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, India)
C. Vishal Reddy (Department of Manufacturing Engineering, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, India)
Revanth Vinay Kumar Kodali (Department of Manufacturing Engineering, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, India)
Sherin Thomas Sipri (Department of Manufacturing Engineering, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, India)
K. Santhosh Raj (Department of Manufacturing Engineering, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, India)
S. Anirudh (Department of Manufacturing Engineering, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, India)
Senthil Kumaran Selvaraj (Department of Manufacturing Engineering, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, India)

International Journal of Quality & Reliability Management

ISSN: 0265-671X

Article publication date: 16 August 2021

Issue publication date: 15 August 2022

80

Abstract

Purpose

This research work focuses on implementing this methodology in reducing the rejection rate of the turbocharger component problem that occurs during the manufacturing process. Using design, measure, analyze, improve and control (DMAIC) processes, it has been identified that clamping pressure on the component is one factor that affects quality. The impact of clamping pressure is studied to arrive at the ideal clamping pressure in which the rejection rate is the least.

Design/methodology/approach

Quality is the keyword in manufacturing where the production of a defect-free component is the most sought out objective. The definition of quality keeps getting refined throughout the years, from making products with no defects to minimizing rejection and scrap in the manufacturing process. Production facilities, to achieve this purpose, have adopted various methods and use of the DMAIC of Six Sigma methodology is one among them.

Findings

The study identified the fault causing the defect and suggested the methods to correct the fault. The suggestions would result in reducing the losses arising due to this and similar rejection causes.

Originality/value

With the adoption of DMAIC, it is found that misalignment of top and side clamp pressure is zero. When the side clamp pressure is at 75 PSI, and top clamp pressure is changed from 90 PSI to 95 PSI, the mean of responses is greater than the side clamp pressure of 80 PSI. Therefore, from the three-combination top clamp pressure of 100 PSI and the side clamp pressure of 75 PSI is the optimal condition.

Keywords

Citation

Sundaramali, G., Reddy, C.V., Kodali, R.V.K., Sipri, S.T., Santhosh Raj, K., Anirudh, S. and Selvaraj, S.K. (2022), "Reduction of hole misalignment in turbocharger center housing", International Journal of Quality & Reliability Management, Vol. 39 No. 8, pp. 1963-1976. https://doi.org/10.1108/IJQRM-08-2020-0285

Publisher

:

Emerald Publishing Limited

Copyright © 2021, Emerald Publishing Limited

Related articles