To read this content please select one of the options below:

The effect of nanolubrication on wear and friction resistance between sliding surfaces

Mu’taz AlTarawneh (Department of Mechanical Engineering, Mutah University, Karak, Jordan)
Salloom AlJuboori (Department of Mechanical Engineering, Mutah University, Karak, Jordan)

Industrial Lubrication and Tribology

ISSN: 0036-8792

Article publication date: 22 May 2023

Issue publication date: 27 June 2023

54

Abstract

Purpose

Studies on this topic have shown the remarkable lubricating properties, viz. friction-reducing and anti-wear, of certain nanoparticles. This makes them potential candidates for replacing the lubrication additives currently used in automobile lubricants, especially because the latter is known to be pollutants and less efficient in some specific conditions. This has not gone unnoticed to professionals in the sector, including those commercializing these additives, the oil companies and the car industry, all of whom are following this burgeoning research area with keen interest. All of them are faced with the problem of providing lubricants that meet the needs of the technological evolution of engines while respecting ever-stricter environmental norms.

Design/methodology/approach

The impact of copper oxide (CuO) and zinc oxide (ZnO) nanoparticles on the tribological properties of the SAE-40 pure diesel oil is studied in this paper. The two nanoparticles are not oxide or deteriorate with the base oil. The average size of CuO and ZnO nanoparticles is 40 and 20 nm, respectively. Nanoparticle concentrations of 0.1 Wt.%, 0.2 Wt.%, 0.3 Wt.%, 0.4 Wt.% and 0.5 Wt.% are tested using a pin-on-disk tribometer to evaluate their impact on friction and wear. The test is carried out at different loads and rotating speeds of 58.86 N and 300 rpm, 39.24 N and 500 rpm and 78.48 N and 900 rpm at room temperature, respectively.

Findings

The obtained results of the nanolubricants are compared with those of pure diesel oil in terms of % improvement in tribological properties. However, it is observed that an increase in the nanoparticle concentrations does not guarantee to enhance the tribological properties. Similarly, increasing the applied load and the rotating speed does not lead to improving the anti-friction and anti-wear properties. The results obtained revealed that the optimal improvements in the anti-friction and anti-wear properties of the pure oil are 69% and 77% when CuO nanoparticle concentrations of 0.3 Wt.% and the ZnO nanoparticle concentrations of 0.1 Wt.% are used, where the applied load and rotating speed are 39.24 N and 500 rpm, respectively. It has also been noticed that the CuO nanolubricants have a significant impact on the anti-friction property compared with ZnO nanolubricants.

Originality/value

All these nanoparticles have been the subject of detailed investigation in this research and many key issues have been tackled, such as the conditions leading to these properties, the lubrication mechanisms coming into play, the influence of parameters such as size, structure and morphology of the nanoparticles on their tribological properties/lubrication mechanisms and the interactions between the particles and the lubricant co-additives. To answer such questions, state-of-the-art characterization techniques are required, often in situ, and sometimes an extremely complex set up. Some of these can even visualize the behavior of a nanoparticle in real time during a tribological test. The research on this topic has given a good understanding of the way these nanoparticles behave, and we can now identify the key parameters to be adjusted when optimizing their lubrication properties.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-08-2022-0234/

Keywords

Acknowledgements

Funding: The authors declare that no funds, grants or other support were received during the preparation of this manuscript.

Conflict of interest: The authors declare no competing financial interest.

Citation

AlTarawneh, M. and AlJuboori, S. (2023), "The effect of nanolubrication on wear and friction resistance between sliding surfaces", Industrial Lubrication and Tribology, Vol. 75 No. 5, pp. 526-535. https://doi.org/10.1108/ILT-08-2022-0234

Publisher

:

Emerald Publishing Limited

Copyright © 2023, Emerald Publishing Limited

Related articles