Skip to main content
Log in

Dynamics of the Intrauterine Fluid–Wall Interface

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Intrauterine fluid movements, which are responsible for embryo transport to a successful implantation site at the fundus, may be induced by myometrial contractions. Myometrial contractions in nonpregnant uteri were studied from in vivo measurements of intrauterine pressures with fluid-filled catheters and by visual observations of high-speed replaying of ultrasound images of the uterus. Transvaginal ultrasound (TVUS) images of sagittal cross sections of the nonpregnant uterus were scanned with an intravaginal ultrasound probe. Images at consecutive times (2 s apart) were digitized and processed by employing modern techniques of image processing. The sets of images were compared to evaluate time variation of the fluid–wall interface with respect to amplitude, frequencies, and wavelength of myometrial contractions. Analysis of TVUS images from 11 volunteers during the proliferative phase revealed that myometrial contractions are fairly symmetric and are propagated from the cervix towards the fundus at a frequency of about 0.01-0.09 Hz. The wavelength, amplitude, and velocity of the fluid–wall interface during a typical contractile wave were found to be 10-30 mm, 0.05-0.2 mm, and 0.5-1.9 mm/s, respectively. Additional data acquisition from a large number of normal subjects is needed to build a data base to predict normal characteristics of myometrial contractions in a nonpregnant uterus, in order to better understand their role in the preimplantation process. © 1999 Biomedical Engineering Society.

PAC99: 8717Jj, 8719St, 4380Qf, 8763Df

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Abramowicz, J. S., and D. F. Archer. Uterine endometrial peristalsis: A transvaginal ultrasound study. Fertil. Steril. 54:451–454, 1990.

    Google Scholar 

  2. Ahlberg, J. H., E. N. Nilson, and J. L. Walsh. The Theory of Splines and their Applications. New York: Academic, 1967.

    Google Scholar 

  3. Baggott, L. M. Human Reproduction. Cambridge, UK: Cambridge University Press, 1997.

    Google Scholar 

  4. Birnholz, J. C., Ultrasonic visualization of endometrial movements. Fertil. Steril. 41:157–158, 1984.

    Google Scholar 

  5. Chalubinski, K., J. Deutinger, and G. Bernaschek. Vaginosonography for recording of cycle-related myometrial contractions. Fertil. Steril. 59:225–228, 1993.

    Google Scholar 

  6. Cibils, L. A. Contractility of the nonpregnant human uterus. Obstet. Gynecol. 30:441–461, 1967.

    Google Scholar 

  7. Coutinho, E. M., L. Nascimento, H. D. S. Maia, and M. T. R. Goncalves. Motility of human myometrium in vivo: Intramural versus transcervical recording. Am. J Obstet. Gynecol. 134:801–812, 1979.

    Google Scholar 

  8. Csapo, A. I., and C. R. Pinto-Dantas. The cyclic activity of the nonpregnant human uterus. A new method for recording intrauterine pressure. Fertil. Steril. 17:34–38, 1966.

    Google Scholar 

  9. Demopoulos, R. I., and K. R. Mittal. Anatomy, histology and physiology. In: The Uterus Pathology, Diagnosis and Management, edited by A. Altchek and L. Deligdisch. New York: Springer, 1991.

    Google Scholar 

  10. DeVries, K., E. A. Lyons, J. Ballard, C. S. Levi, and D. J. Lindsay. Contractions of the inner third of the myometrium. Am. J. Obstet. Gynecol. 162:679–682, 1990.

    Google Scholar 

  11. Eytan, O., and D. Elad. Analysis of intra-uterine fluid motion induced by uterine contractions. Bull. Math. Biol. 61:221–238, 1999.

    Google Scholar 

  12. Fahy, U. M., D. J. Cahill, P. G. Wardle, and M. G. Hull. In vitro fertilization in completely natural cycles. Hum. Reprod. 10:572–575, 1995.

    Google Scholar 

  13. Fisher, R., S. Perkins, A. Walker, and E. Wolfart. Hypermedia Image Processing Reference. Chichester, UK: Wiley, 1996.

    Google Scholar 

  14. Garfield, R. E., Structural studies of innervation on nonpregnant rat uterus. Am. J. Physiol. 251:C41-C54, 1986.

    Google Scholar 

  15. Guyton, A. C., and J. E. Hall. Textbook of Medical Physiology, 9th ed., Philadelphia, PA: Saunders, 1996, p. 1033.

    Google Scholar 

  16. Hafez, E. S. E. Human Reproduction Conception and Contraception. New York: Harper and Row, 1980.

    Google Scholar 

  17. Hasson, H. M., Uterine geometry and IUCD design. Br. J. Obstet. Gynecol. (Suppl). 89:1–10, 1982.

    Google Scholar 

  18. Hendricks, C. H., Inherent motility patterns and response characteristics of the non-pregnant human uterus. Am. J. Obstet. Gynecol. 96:824–843, 1966.

    Google Scholar 

  19. IJland, M. M., L. H. Evers, G. A. J. Dunselman, C. van Katwijk, C. R. Lo, and H. J. Hoogland. Endometrial wavelike movements during the menstrual cycle. Fertil. Steril. 65:746–749, 1996.

    Google Scholar 

  20. IJland, M. M., L. H. Evers, G. A. J. Dunselman, L. Volovics, and H. J. Hoogland. Relation between endometrial wavelike activity and fecundability in spontaneous cycles. Fertil. Steril. 67:492–496, 1997.

    Google Scholar 

  21. IJland, M. M., L. H. Evers, and H. J. Hoogland. Velocity of endometrial wavelike activity in spontaneous cycles. Fertil. Steril. 68:72–75, 1997.

    Google Scholar 

  22. Knutzen, V., C. J. Stratton, G. Sher, P. I. McNamee, T. T. Huang, and C. Soto-Albors. Mock embryo transport in early luteal phase, the cycle before in vitro fertilization and embryo transfer: A descriptive study. Fertil. Steril. 57:156–162, 1992.

    Google Scholar 

  23. Knuz, G., D. Beil, H. Deininger, L. Wildt, and G. Leyendecker. Endocrine control of rapid sperm transport through the female genital tract as documented by hysterosalpingos-cintigraphy: Physiological and pathophysiological aspects. Hum. Reprod. 10:149–150, 1995.

    Google Scholar 

  24. Knuz, G., D. Beil, H. Deininger, L. Wildt, and G. Leyendecker. The dynamics of rapid sperm transport through the female genital tract: Evidence from vaginal sonography of uterine peristaltic and hysterosalpingoscintigraphy. Hum. Reprod. 3:627–632, 1996.

    Google Scholar 

  25. Kuriyama, H., K. Kitamura, T. Itoh, and R. Inoue. Physiological features of visceral smooth muscle cells, with special reference to receptors and ion channels. Physiol. Rev. 78:811–920, 1998.

    Google Scholar 

  26. Lyons, E. A., P. J. Taylor, and X. H. Zheng. Characterization of subendometrial myometrial contractions throughout the menstrual cycle in normal fertile women. Fertil. Steril. 55:771–774, 1991.

    Google Scholar 

  27. Marshall, J. M. The physiology of the myometrium. In: The Uterus, edited by H. J. Norris. Baltimore, MD: Williams and Wilkins, 1973, pp. 89–109.

    Google Scholar 

  28. Marshall, J. M., Effects of ovarian steroids and pregnancy on adrenergic nerves of uterus and oviduct. Am. J. Physiol. 240:C165-C174, 1981.

    Google Scholar 

  29. Martinez-Gaudio, M., T. Yoshida, and L. P. Bengtsson. Propagated and non-propagated myometrial contractions in a normal menstrual cycle. Am. J. Obstet. Gynecol. 115:107–111, 1973.

    Google Scholar 

  30. Odeblad, E., Undulations of macromolecules in cervical mucus. Int. J. Fertil. 7:313–319, 1962.

    Google Scholar 

  31. Oike, K., K. Ishihara, and S. K. Kuchi. A study on the endometrial movements and serum hormonal level in connection with uterine contraction. Acta Obstet. Gynecol. Jpn. 42:86–92, 1990.

    Google Scholar 

  32. Seibel, M. M. Infertility: A Comprehensive Text, 2nd ed. Stanford, CT: Appleton and Lange, 1997, p. 462.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eytan, O., Jaffa, A.J., Har-Toov, J. et al. Dynamics of the Intrauterine Fluid–Wall Interface. Annals of Biomedical Engineering 27, 372–379 (1999). https://doi.org/10.1114/1.181

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.181

Navigation