Skip to main content
Log in

Influence of Progressive Central Hypovolemia on Hölder Exponent Distributions of Cardiac Interbeat Intervals

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The purpose of the study was to determine the dependency of the statistical properties of the R to R interval (RRI) time series on progressive central hypovolemia with lower body negative pressure. Two data-processing techniques based on wavelet transforms were used to determine the change in the nonstationary nature of the RRI time series with changing negative pressure. The results suggest that autonomic neural mechanism driving cardiac interbeat intervals during central hypovolemia go through various levels of multifractality, as determined by Hölder exponent distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Akselrod, S., D. Gordon, F. A. Ubel, D. C. Shannon, A. C. Barger, and R. J. Cohen. Power spectrum analysis of heart rate fluctuation: Aquantitiative probe of beat-to-beat cardiovascular control. Science. 213:220–222, 1981.

    Google Scholar 

  2. Arneodo, A., E. Bacry, and J. F. Muzy. The multifractal formalism revisited with wavelets. Int. J. Bifurc. Chaos 4 (2):245–302, 1994.

    Google Scholar 

  3. Badii, R., and A. Politi. Complexity, Hierarchical Structures and Scaling in Physics. Cambridge, UK: Cambridge University Press, 1997.

    Google Scholar 

  4. Bassigthwaighte, J. B., L. S. Liebowitch, and B. J. West. Fractal Physiology. Oxford: Oxford University Press, 1994.

    Google Scholar 

  5. Beran, J. Statistics of Long-Memory Processes. Monographs on Statistics and Applied Probability 61. New York: Chapman & Hall, 1994.

    Google Scholar 

  6. Brown, T. E., L. A. Beightol, J. Koh, and D. L. Eckberg. Important influence of respiration on human R-R interval power spectra is largely ignored. J. Appl. Physiol. 75:2310–2317, 1993.

    Google Scholar 

  7. Convertino, V. A. Lower bodh negative pressure as a tool for research in aerospace physiology and military medicine. J. Grav. Physiol. 8:1–14, 2001.

    Google Scholar 

  8. Daubechies, I. Ten Lectures on Wavelets. SIAM, 1992.

  9. Falconer, K. Fractal Geometry. New York: John Wiley & Sons, 1990.

    Google Scholar 

  10. Feder, J. Fractals. New York: Plenum Publishers, 1988.

    Google Scholar 

  11. _Goldberger, A. L., D. R. Rigney, and B. J. West. Chaos, fractals and physiology. Sci. Am. 262:42–49, 1990.

    Google Scholar 

  12. _Gough, N. A. J. Fractals, chaos and fetal heart rate. Lancet 339:182–183, 1992.

    Article  Google Scholar 

  13. _Ivanov, P. C., M. G. Rosenblum, L. A. Nunes Amaral, Z. R. Struzik, S. Havlin, A. L. Goldberger, and H. E. Stanley. Multifractality in human heartbeat dynamics. Nature 399:461–465, 1999.

    Article  Google Scholar 

  14. _Kaiser, G. A Friendly Guide to Wavelets. Boston: Birkhäuser, 1994.

    Google Scholar 

  15. _Mallat, S. G. A Wavelet Tour of Signal Processing, 2nd ed. Cambridge: Academic Press, 1999.

    Google Scholar 

  16. _Mallat, S. G., and W. L. Hwang. Singularity detection and processing with wavelets. IEEE Trans. Inform. Theory 38:617–643, 1992.

    Google Scholar 

  17. _Mallat, S. G., and S. Zhong. Complete signal representation with multiscale edges. IEEE Trans. PAMI 14:710–732, 1992.

    Google Scholar 

  18. Malliami, A. The pattern of sympathovagal balance explred in the frequency domain. News Physiol. Sci. 14:111–117, 1999.

    Google Scholar 

  19. Mandelbrot, B. B. The Fractal Geometry of Nature. New York: Freeman, 1983.

    Google Scholar 

  20. Muzy, J. F., E. Bacry, and A. Arneodo. Multifractal formalism for fractal signals-The structure-function approach versus the wavelet-transform modulus-maxima method. Phys. Rev. E 47(2):875–884, 1993.

    Article  Google Scholar 

  21. Peng, C. K., J. Metus, J. M. Hausdorff, S. Havlin, H. R. Stanley, and A. L. Goldberger. Long-range anticorrelations and non-Gaussian behavior of the heart. Phys. Rev. Lett. 70:1343–1346, 1993.

    Article  Google Scholar 

  22. Percival, D. B., and A. T. Walden. Wavelet Methods for Time Series Analysis. Cambridge: Cambridge University Press, 2000.

    Google Scholar 

  23. Scafetta, N., L. Griffin, and B. J. West. Hölder exponent spectra for human gait. Physica A 328:561–583, 2003.

    Article  Google Scholar 

  24. Struzik, Z. R. Determining local singularity strengths and their spectra with thewavelet transform. Fractals 8(2):163–179, 2000.

    Article  Google Scholar 

  25. Struzik, Z. R. Removing Divergences in the Negative Moments of the Multi-Fractal Partition Function with the Wavelet Transform. CWI Report, INS-R9803, 1998.

  26. West, B. J. Fractal Physiology and Chaos in Medicine. Singapore: World Scientific, 1990.

    Google Scholar 

  27. West, B. J. Physiology, Promiscuity and Prophecy at the Millennium: A Tale of Tails. Singapore: World Scientific, 1999.

    Google Scholar 

  28. West, B. J., M. Bologna, and P. Grigolini. The Physics of Fractal Operators. Springer-Verlag, New York, 2003.

    Google Scholar 

  29. West, B. J., and W. Deering. Fractal physiology for physicists: Levy statistics, Phys. Rep. 246:1–100, 1994.

    Article  Google Scholar 

  30. West, B. J., M. Latka, M. Glaubic-Latka. Multifractality of cerebral blood flow. Physica A 318:453–460, 2003.

    Article  Google Scholar 

  31. West, B. J., and N. Scafetta. A nonlinear model for human gait, Phys. Rev. E 67:051917–1, 2003.

    Article  Google Scholar 

  32. West, B. J., R. Zhang, A. W. Sanders, S. Miniyar, J. H. Zuckerman, and B. D. Levine. Fractal fluctuations in cardiac time series, Physica A 270:552–566, 1999.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

West, B.J., Scafetta, N., Cooke, W.H. et al. Influence of Progressive Central Hypovolemia on Hölder Exponent Distributions of Cardiac Interbeat Intervals. Annals of Biomedical Engineering 32, 1077–1087 (2004). https://doi.org/10.1114/B:ABME.0000036644.69559.ad

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/B:ABME.0000036644.69559.ad

Navigation