Abstract

Nanofluid minimum quantity lubrication (NMQL) has better stability, higher thermal conductivity, and excellent lubrication performance compared with traditional flood lubrication. The heat transfer model and finite difference model were established to verify the feasibility of NMQL conditions in grinding cemented carbide. Based on them, the grinding temperature of cemented carbide is calculated numerically. Results show that the grinding zone temperatures of flood grinding and NMQL are lower, 85.9 °C and 143.2 °C, respectively. Surface grinding experiments of cemented carbide YG8 under different working conditions are carried out. Dry grinding (227.2 °C) is used as the control group. Grinding zone temperatures of flood grinding, minimum quantity lubrication, and NMQL decrease by 64.2%, 39.5%, and 20.4%, respectively. The error is 6.3% between theoretical calculation temperature and experimental measurement temperature. Based on machining process parameters (specific grinding force, force ratio) and experimental results (microstructure of grinding wheel, workpiece, and grinding debris), the effects of different working conditions on wheel wear are studied. NMQL achieves the highest G ratio of 6.45, the smallest specific grinding force, and the smallest Fn/Ft ratio of 2.84, which further proves that NMQL is suitable for grinding cemented carbide.

References

1.
Huang
,
B. T.
,
Li
,
C. H.
,
Zhang
,
Y. B.
,
Ding
,
W. F.
,
Yang
,
M.
,
Yang
,
Y. Y.
,
Zhai
,
H.
,
Xu
,
X. F.
,
Wang
,
D. Z.
,
Debnath
,
S.
,
Jamil
,
M.
,
Li
,
H. N.
,
Ali
,
H. M.
,
Gupta
,
M. K.
, and
Zafar Said
,
Z.
,
2020
, “
Advances in Fabrication of Ceramic Corundum Abrasives Based on Sol–Gel Process
,”
Chinese J. Aeronaut.
10.1016/j.cja.2020.07.004
2.
Gao
,
T.
,
Li
,
C. H.
,
Zhang
,
Y. B.
,
Yang
,
M.
,
Jia
,
D. Z.
,
Jin
,
T.
,
Hou
,
Y. L.
, and
Li
,
R. Z.
,
2019
, “
Dispersing Mechanism and Tribological Performance of Vegetable Oil-Based CNT Nanofluids With Different Surfactants
,”
Tribol. Int.
,
131
, pp.
51
63
. 10.1016/j.triboint.2018.10.025
3.
Cui
,
X.
,
Li
,
C. H.
,
Zhang
,
Y. B.
,
Jia
,
D. Z.
,
Zhao
,
Y. J.
,
Li
,
R. Z.
, and
Cao
,
H. J.
,
2019
, “
Tribological Properties Under the Grinding Wheel and Workpiece Interface by Using Graphene Nanofluid Lubricant
,”
Int. J. Adv. Manuf. Technol.
,
104
(
9–12
), pp.
3943
3958
. 10.1007/s00170-019-04129-8
4.
Li
,
B. K.
,
Ding
,
W. F.
,
Yang
,
C. Y.
, and
Li
,
C. H.
,
2019
, “
Grindability of Powder Metallurgy Nickel-Base Superalloy FGH96 and Sensibility Analysis of Machined Surface Roughness
,”
Int. J. Adv. Manuf. Technol.
,
101
(
9–12
), pp.
2259
2273
. 10.1007/s00170-018-3117-0
5.
Duan
,
Z. J.
,
Yin
,
Q. G.
,
Li
,
C. H.
,
Dong
,
L.
,
Bai
,
X. F.
,
Zhang
,
Y. B.
,
Yang
,
M.
,
Jia
,
D. Z.
,
Li
,
R. Z.
, and
Liu
,
Z. Q.
,
2020
, “
Milling Force and Surface Morphology of 45 Steel Under Different Al2O3 Nanofluid Concentrations
,”
Int. J. Adv. Manuf. Technol.
,
107
(
3–4
), pp.
1277
1296
. 10.1007/s00170-020-04969-9
6.
Duchosal
,
A.
,
Serra
,
R.
,
Leroy
,
R.
, and
Louste
,
C.
,
2015
, “
Numerical Steady State Prediction of Spitting Effect for Different Internal Canalization Geometries Used in MQL Machining Strategy
,”
J. Manuf. Process.
,
20
, pp.
149
161
. 10.1016/j.jmapro.2015.08.008
7.
Xiu
,
S. C.
,
Deng
,
Y. S.
, and
Kong
,
X. N.
,
2019
, “
Effects of Stress on Phase Transformations in Grinding by FE Modeling and Experimental Approaches
,”
Materials
,
12
(
14
), p.
2327
. 10.3390/ma12142327
8.
Wu
,
W. T.
,
Li
,
C. H.
,
Yang
,
M.
,
Zhang
,
Y. B.
,
Jia
,
D. Z.
,
Hou
,
Y. L.
,
Li
,
R. Z.
,
Cao
,
H. J.
, and
Han
,
Z. G.
,
2019
, “
Specific Energy and G Ratio of Grinding Cemented Carbide Under Different Cooling and Lubrication Conditions
,”
Int. J. Adv. Manuf. Technol.
,
105
(
1–4
), pp.
67
82
. 10.1007/s00170-019-04156-5
9.
Bai
,
X. F.
,
Zhou
,
F. M.
,
Li
,
C. H.
,
Dong
,
L.
,
Lv
,
X. J.
, and
Yin
,
Q. G.
,
2020
, “
Physicochemical Properties of Degradable Vegetable-Based Oils on Minimum Quantity Lubrication Milling
,”
Int. J. Adv. Manuf. Technol.
,
106
(
9–10
), pp.
4143
4155
. 10.1007/s00170-019-04695-x
10.
Gao
,
T.
,
Li
,
C. H.
,
Jia
,
D. Z.
,
Zhang
,
Y. B.
,
Yang
,
M.
,
Wang
,
X. M.
,
Cao
,
H. J.
,
Li
,
R. Z.
,
Ali
,
H. M.
, and
Xu
,
X. F.
,
2020
, “
Surface Morphology Assessment of CFRP Transverse Grinding Using CNT Nanofluid Minimum Quantity Lubrication
,”
J. Cleaner Prod.
,
277
, p.
123328
. 10.1016/j.jclepro.2020.123328
11.
Shen
,
B.
,
Shih
,
A. J.
, and
Xiao
,
G. X.
,
2011
, “
A Heat Transfer Model Based on Finite Difference Method for Grinding
,”
ASME J. Manuf. Sci. Eng.
,
133
(
3
), p.
031001
. 10.1115/1.4003947
12.
Shen
,
B.
,
Shih
,
A. J.
, and
Tung
,
S. C.
,
2008
, “
Application of Nanofluids in Minimum Quantity Lubrication Grinding
,”
Tribol. Lubr. Technol.
,
51
(
6
), pp.
730
737
. 10.1080/10402000802071277
13.
Jia
,
D. Z.
,
Li
,
C. H.
,
Zhang
,
D. K.
,
Zhang
,
Y. B.
, and
Zhang
,
X. W.
,
2014
, “
Experimental Verification of Nanoparticle Jet Minimum Quantity Lubrication Effectiveness in Grinding
,”
J. Nanopart. Res.
,
16
(
12
), p.
2758
. 10.1007/s11051-014-2758-7
14.
Mia
,
M.
,
Razi
,
M. H.
,
Ahmad
,
I.
,
Mostafa
,
R.
,
Rahman
,
S. M. S.
,
Ahmed
,
D. H.
,
Dey
,
P. R.
, and
Dhar
,
N. R.
,
2017
, “
Effect of Time-Controlled MQL Pulsing on Surface Roughness in Hard Turning by Statistical Analysis and Artificial Neural Network
,”
Int. J. Adv. Manuf. Technol.
,
91
(
9–12
), pp.
3211
3223
. 10.1007/s00170-016-9978-1
15.
Li
,
C. H.
,
Zhang
,
Q.
,
Wang
,
S.
,
Jia
,
D. Z.
,
Zhang
,
D. K.
,
Zhang
,
Y. B.
, and
Zhang
,
X. W.
,
2015
, “
Useful Fluid Flow and Flow Rate in Grinding: an Experimental Verification
,”
Int. J. Adv. Manuf. Technol.
,
81
(
5–8
), pp.
785
794
. 10.1007/s00170-015-7230-z
16.
Shi
,
C. F.
,
Li
,
X.
, and
Chen
,
Z. T.
,
2014
, “
Design and Experimental Study of a Micro-Groove Grinding Wheel With Spray Cooling Effect
,”
Chin. J. Aeronaut.
,
27
(
2
), pp.
407
412
. 10.1016/j.cja.2013.07.013
17.
Miao
,
Q.
,
Ding
,
W. F.
,
Kuang
,
W. J.
, and
Xu
,
J. H.
,
2020
, “
Tool Wear Behavior of Vitrified Microcrystalline Alumina Wheels in Creep Feed Profile Grinding of Turbine Blade Root of Single Crystal Nickel-Based Superalloy
,”
Tribol. Int.
,
145
, p.
106144
. 10.1016/j.triboint.2019.106144
18.
Dong
,
L.
,
Li
,
C. H.
,
Bai
,
X. F.
,
Zhai
,
M. G.
,
Qi
,
Q.
,
Yin
,
Q. G.
,
Lv
,
X. J.
, and
Li
,
L. F.
,
2019
, “
Analysis of the Cooling Performance of Ti-6Al-4V in Minimum Quantity Lubricant Milling With Different Nanoparticles
,”
Int. J. Adv. Manuf. Technol.
,
103
(
5–8
), pp.
2197
2206
. 10.1007/s00170-019-03466-y
19.
Zhang
,
X. P.
,
Li
,
C. H.
,
Jia
,
D. Z.
,
Gao
,
T.
,
Zhang
,
Y. B.
,
Yang
,
M.
,
Li
,
R. Z.
,
Han
,
Z. G.
, and
Ji
,
H. J.
,
2019
, “
Spraying Parameter Optimization and Microtopography Evaluation in Nanofluid Minimum Quantity Lubrication Grinding
,”
Int. J. Adv. Manuf. Technol.
,
103
(
5–8
), pp.
2523
2539
. 10.1007/s00170-019-03642-0
20.
Qu
,
S. S.
,
Gong
,
Y. D.
,
Yang
,
Y. Y.
,
Sun
,
Y.
,
Wen
,
X. L.
, and
Qi
,
Y.
,
2020
, “
Investigating Minimum Quantity Lubrication in Unidirectional C-f/SiC Composite Grinding
,”
Ceram. Int.
,
46
(
3
), pp.
3582
3591
. 10.1016/j.ceramint.2019.10.076
21.
Ruzzi
,
R. D.
,
Belentani
,
R. D.
,
Mello
,
H. J.
,
Canarim
,
R. C.
,
D'Addona
,
D. M.
,
Diniz
,
A. E.
,
de Aguiar
,
P. R.
, and
Bianchi
,
E. C.
,
2017
, “
MQL with Water in Cylindrical Plunge Grinding of Hardened Steels Using CBN Wheels, With and Without Wheel Cleaning by Compressed Air
,”
Int. J. Adv. Manuf. Technol.
,
90
(
1–4
), pp.
329
338
. 10.1007/s00170-016-9396-4
22.
Zhang
,
J. C.
,
Li
,
C. H.
,
Zhang
,
Y. B.
,
Yang
,
M.
,
Jia
,
D. Z.
,
Hou
,
Y. L.
, and
Li
,
R. Z.
,
2018
, “
Temperature Field Model and Experimental Verification on Cryogenic Air Nanofluid Minimum Quantity Lubrication Grinding
,”
Int. J. Adv. Manuf. Technol.
,
97
(
1–4
), pp.
209
228
. 10.1007/s00170-018-1936-7
23.
Dong
,
P. Q.
,
Duc
,
T. M.
, and
Long
,
T. T.
,
2019
, “
Performance Evaluation of MQCL Hard Milling of SKD 11 Tool Steel Using MoS2 Nanofluid
,”
Metals
,
9
(
6
), pp.
1
16
. 10.3390/met9060658
24.
Chetan
,
Ghosh
,
S.
, and
Rao
,
P. V.
,
2019
, “
Comparison Between Sustainable Cryogenic Techniques and Nano-MQL Cooling Mode in Turning of Nickel-Based Alloy
,”
J. Cleaner Prod.
,
231
, pp.
1036
1049
. 10.1016/j.jclepro.2019.05.196
25.
Shokrani
,
A.
,
Al-Samarrai
,
I.
, and
Newman
,
S. T.
,
2019
, “
Hybrid Cryogenic MQL for Improving Tool Life in Machining of Ti-6Al-4V Titanium Alloy
,”
J. Manuf. Process.
,
43
, pp.
229
243
. 10.1016/j.jmapro.2019.05.006
26.
Rouly
,
E.
,
Bauer
,
R. J.
, and
Warkentin
,
A.
,
2017
, “
An Investigation Into the Effect of Nozzle Shape and Jet Pressure in Profile Creepfeed Grinding
,”
Proc. Inst. Mech. Eng. Part B-J. Eng. Manuf.
,
231
(
7
), pp.
1116
1130
. 10.1177/0954405415584960
27.
Hu
,
M.
,
Gao
,
X. M.
,
Wang
,
P.
,
Fu
,
Y. L.
,
Sun
,
J. Y.
,
Weng
,
L. J.
,
Jiang
,
D.
, and
Wang
,
D. S.
,
2019
, “
Amorphous Carbon Films In Situ Formed From PTFE Transfer Layer in Solid Lubricated Cryogenic Turbopump Bearings
,”
Tribol. Trans.
,
62
(
4
), pp.
603
613
. 10.1080/10402004.2019.1586024
28.
Yang
,
M.
,
Li
,
C. H.
,
Zhang
,
Y. B.
,
Jia
,
D. Z.
,
Li
,
R. Z.
,
Hou
,
Y. L.
,
Cao
,
H. J.
, and
Wang
,
J.
,
2019
, “
Predictive Model for Minimum Chip Thickness and Size Effect in Single Diamond Grain Grinding of Zirconia Ceramics Under Different Lubricating Conditions
,”
Ceram. Int.
,
45
(
12
), pp.
14908
14920
. 10.1016/j.ceramint.2019.04.226
29.
Yang
,
M.
,
Li
,
C. H.
,
Zhang
,
Y. B.
,
Jia
,
D. Z.
,
Li
,
R. Z.
,
Hou
,
Y. L.
, and
Cao
,
H. J.
,
2019
, “
Effect of Friction Coefficient on Chip Thickness Models in Ductile-Regime Grinding of Zirconia Ceramics
,”
Int. J. Adv. Manuf. Technol.
,
102
(
5–8
), pp.
2617
2632
. 10.1007/s00170-019-03367-0
30.
Yang
,
M.
,
Li
,
C. H.
,
Zhang
,
Y. B.
,
Jia
,
D. Z.
,
Zhang
,
X. P.
,
Hou
,
Y. L.
,
Li
,
R. Z.
, and
Wang
,
J.
,
2017
, “
Maximum Undeformed Equivalent Chip Thickness for Ductile-Brittle Transition of Zirconia Ceramics Under Different Lubrication Conditions
,”
Int. J. Mach. Tool Manuf.
,
122
, pp.
41
51
. 10.1016/j.ijmachtools.2017.06.003
31.
Duan
,
Z.
,
Li
,
C.
,
Zhang
,
Y.
,
Dong
,
L.
,
Bai
,
X.
,
Yang
,
M.
,
Jia
,
D.
,
Li
,
R.
,
Cao
,
H.
, and
Xu
,
X.
,
2020
, “
Milling Surface Roughness for 7050 Aluminum Alloy Cavity Influenced by Nozzle Position of Nanofluid Minimum Quantity Lubrication
,”
Chin. J. Aeronaut.
10.1016/j.cja.2020.04.029
32.
Duc
,
T. M.
,
Long
,
T. T.
, and
Thanh
,
D. V.
,
2020
, “
Evaluation of Minimum Quantity Lubrication and Minimum Quantity Cooling Lubrication Performance in Hard Drilling of Hardox 500 Steel Using Al2O3 Nanofluid
,”
Adv. Mech. Eng.
,
12
(
2
), pp.
1
9
. 10.1177/1687814019888404
33.
Minh
,
D. T.
,
The
,
L. T.
, and
Bao
,
N. T.
,
2017
, “
Performance of Al2O3 Nanofluids in Minimum Quantity Lubrication in Hard Milling of 60Si(2)Mn Steel Using Cemented Carbide Tools
,”
Adv. Mech. Eng.
,
9
(
7
), pp.
1
9
.
34.
Nouioua
,
M.
,
Yallese
,
M. A.
,
Khettabi
,
R.
,
Belhadi
,
S.
,
Bouhalais
,
M. L.
, and
Girardin
,
F.
,
2017
, “
Investigation of the Performance of the MQL, Dry, and Wet Turning by Response Surface Methodology (RSM) and Artificial Neural Network (ANN)
,”
Int. J. Adv. Manuf. Technol.
,
93
(
5–8
), pp.
2485
2504
. 10.1007/s00170-017-0589-2
35.
Jia
,
D. Z.
,
Li
,
C. H.
,
Zhang
,
Y. B.
,
Yang
,
M.
,
Zhang
,
X. P.
,
Li
,
R. Z.
, and
Ji
,
H. J.
,
2019
, “
Experimental Evaluation of Surface Topographies of NMQL Grinding ZrO2 Ceramics Combining Multiangle Ultrasonic Vibration
,”
Int. J. Adv. Manuf. Technol.
,
100
(
1–4
), pp.
457
473
. 10.1007/s00170-018-2718-y
36.
Gao
,
T.
,
Zhang
,
X. P.
,
Li
,
C. H.
,
Zhang
,
Y. B.
,
Yang
,
M.
,
Jia
,
D. Z.
,
Ji
,
H. J.
,
Zhao
,
Y. J.
,
Li
,
R. Z.
,
Yao
,
P.
, and
Zhu
,
L. D.
,
2020
, “
Surface Morphology Evaluation of Multi-Angle 2D Ultrasonic Vibration Integrated With Nanofluid Minimum Quantity Lubrication Grinding
,”
J. Manuf. Process.
,
51
, pp.
44
61
. 10.1016/j.jmapro.2020.01.024
37.
Zhang
,
D. K.
,
Li
,
C. H.
,
Jia
,
D. Z.
,
Zhang
,
Y. B.
, and
Zhang
,
X. W.
,
2015
, “
Specific Grinding Energy and Surface Roughness of Nanoparticle jet Minimum Quantity Lubrication in Grinding
,”
Chin. J. Aeronaut.
,
28
(
2
), pp.
570
581
. 10.1016/j.cja.2014.12.035
38.
Zhang
,
J. C.
,
Li
,
C. H.
,
Zhang
,
Y. B.
,
Yang
,
M.
,
Jia
,
D. Z.
,
Liu
,
G. T.
,
Hou
,
Y. L.
,
Li
,
R. Z.
,
Zhang
,
N. Q.
,
Wu
,
Q. D.
, and
Cao
,
H. J.
,
2018
, “
Experimental Assessment of an Environmentally Friendly Grinding Process Using Nanofluid Minimum Quantity Lubrication With Cryogenic Air
,”
J. Cleaner Prod.
,
193
, pp.
236
248
. 10.1016/j.jclepro.2018.05.009
39.
Lee
,
P. H.
,
Nam
,
J. S.
,
Li
,
C.
, and
Lee
,
S. W.
,
2012
, “
An Experimental Study on Micro-Grinding Process With Nanofluid Minimum Quantity Lubrication (MQL)
,”
Int. J. Precis. Eng. Manuf.
,
13
(
3
), pp.
331
338
. 10.1007/s12541-012-0042-2
40.
Zhang
,
Y. B.
,
Li
,
C. H.
,
Jia
,
D. Z.
,
Li
,
B. K.
,
Wang
,
Y. G.
,
Yang
,
M.
,
Hou
,
Y. L.
, and
Zhang
,
X. W.
,
2016
, “
Experimental Study on the Effect of Nanoparticle Concentration on the Lubricating Property of Nanofluids for MQL Grinding of Ni-Based Alloy
,”
J. Mater. Process. Tech.
,
232
, pp.
100
115
. 10.1016/j.jmatprotec.2016.01.031
41.
Wang
,
Y. G.
,
Li
,
C. H.
,
Zhang
,
Y. B.
,
Yang
,
M.
,
Li
,
B. K.
,
Dong
,
L.
, and
Wang
,
J.
,
2018
, “
Processing Characteristics of Vegetable Oil-Based Nanofluid MQL for Grinding Different Workpiece Materials
,”
Int. J. Precis. Eng. Manuf. -Green Technol.
,
5
(
2
), pp.
327
339
. 10.1007/s40684-018-0035-4
42.
Liu
,
G. T.
,
Li
,
C. H.
,
Zhang
,
Y. B.
,
Yang
,
M.
,
Jia
,
D. Z.
,
Zhang
,
X. P.
,
Guo
,
S. M.
,
Li
,
R. Z.
, and
Zhai
,
H.
,
2018
, “
Process Parameter Optimization and Experimental Evaluation for Nanofluid MQL in Grinding Ti-6Al-4V Based on Grey Relational Analysis
,”
Mater. Manuf. Process.
,
33
(
9
), pp.
950
963
. 10.1080/10426914.2017.1388522
43.
Yang
,
M.
,
Li
,
C. H.
,
Zhang
,
Y. B.
,
Jia
,
D. Z.
,
Zhang
,
X. P.
,
Hou
,
Y. L.
,
Shen
,
B.
, and
Li
,
R. Z.
,
2018
, “
Microscale Bone Grinding Temperature by Dynamic Heat Flux in Nanoparticle jet Mist Cooling with Different Particle Sizes
,”
Mater. Manuf. Process.
,
33
(
1
), pp.
58
68
. 10.1080/10426914.2016.1244846
44.
Zhang
,
Y. B.
,
Li
,
C. H.
,
Jia
,
D. Z.
,
Zhang
,
D. K.
, and
Zhang
,
X. W.
,
2015
, “
Experimental Evaluation of the Lubrication Performance of MoS2/CNT Nanofluid for Minimal Quantity Lubrication in Ni-Based Alloy Grinding
,”
Int. J. Mach. Tool. Manuf.
,
99
, pp.
19
33
. 10.1016/j.ijmachtools.2015.09.003
45.
Guo
,
S. M.
,
Li
,
C. H.
,
Zhang
,
Y. B.
,
Yang
,
M.
,
Jia
,
D. Z.
,
Zhang
,
X. P.
,
Liu
,
G. T.
,
Li
,
R. Z.
,
Bing
,
Z. R.
, and
Ji
,
H. J.
,
2018
, “
Analysis of Volume Ratio of Castor/Soybean oil Mixture on Minimum Quantity Lubrication Grinding Performance and Microstructure Evaluation by Fractal Dimension
,”
Ind. Crops Prod.
,
111
, pp.
494
505
. 10.1016/j.indcrop.2017.11.024
46.
Guo
,
S. M.
,
Li
,
C. H.
,
Zhang
,
Y. B.
,
Wang
,
Y. G.
,
Li
,
B. K.
,
Yang
,
M.
,
Zhang
,
X. P.
, and
Liu
,
G. T.
,
2017
, “
Experimental Evaluation of the Lubrication Performance of Mixtures of Castor Oil With Other Vegetable Oils in MQL Grinding of Nickel-Based Alloy
,”
J. Cleaner Prod.
,
140
, pp.
1060
1076
. 10.1016/j.jclepro.2016.10.073
47.
Zhang
,
D. K.
,
Li
,
C. H.
,
Zhang
,
Y. B.
,
Jia
,
D. Z.
, and
Zhang
,
X. W.
,
2015
, “
Experimental Research on the Energy Ratio Coefficient and Specific Grinding Energy in Nanoparticle Jet MQL Grinding
,”
Int. J. Adv. Manuf. Technol.
,
78
(
5–8
), pp.
1275
1288
. 10.1007/s00170-014-6722-6
48.
Mao
,
C.
,
Tang
,
X. J.
,
Zou
,
H. F.
,
Huang
,
X. M.
, and
Zhou
,
Z. X.
,
2012
, “
Investigation of Grinding Characteristic Using Nanofluid Minimum Quantity Lubrication
,”
Int. J. Precis. Eng. Manuf.
,
13
(
10
), pp.
1745
1752
. 10.1007/s12541-012-0229-6
49.
Li
,
C. H.
,
Li
,
J. Y.
,
Wang
,
S.
, and
Zhang
,
Q.
,
2013
, “
Modeling and Numerical Simulation of the Grinding Temperature Field With Nanoparticle Jet of MQL
,”
Adv. Mech. Eng.
, p.
986984
.
50.
Rabiei
,
F.
,
Rahimi
,
A. R.
,
Hadad
,
M. J.
, and
Saberi
,
A.
,
2017
, “
Experimental Evaluation of Coolant-Lubricant Properties of Nanofluids in Ultrasonic Assistant MQL Grinding
,”
Int. J. Adv. Manuf. Technol.
,
93
(
9–12
), pp.
3935
3953
. 10.1007/s00170-017-0774-3
51.
Mao
,
C.
,
Zou
,
H. F.
,
Huang
,
Y.
,
Li
,
Y. F.
, and
Zhou
,
Z. X.
,
2013
, “
Analysis of Heat Transfer Coefficient on Workpiece Surface During Minimum Quantity Lubricant Grinding
,”
Int. J. Adv. Manuf. Technol.
,
66
(
1–4
), pp.
363
370
. 10.1007/s00170-012-4330-x
52.
Zhang
,
Y. B.
,
Li
,
C. H.
,
Ji
,
H. J.
,
Yang
,
X. H.
,
Yang
,
M.
,
Jia
,
D. Z.
,
Zhang
,
X. P.
,
Li
,
R. Z.
, and
Wang
,
J.
,
2017
, “
Analysis of Grinding Mechanics and Improved Predictive Force Model Based on Material-Removal and Plastic-Stacking Mechanisms
,”
Int. J. Mach. Tools Manuf.
,
122
, pp.
67
83
. 10.1016/j.ijmachtools.2017.06.002
53.
Li
,
C. H.
, and
Ali
,
H. M.
,
2020
,
Enhanced Heat Transfer Mechanism of Nanofluid MQL Cooling Grinding
,
IGI Global
,
Hershey
.
54.
Sani
,
A. S. A.
,
Abd Rahim
,
E.
,
Sharif
,
S.
, and
Sasahara
,
H.
,
2019
, “
Machining Performance of Vegetable Oil With Phosphonium- and Ammonium-Based Ionic Liquids via MQL Technique
,”
J. Cleaner Prod.
,
209
, pp.
947
964
. 10.1016/j.jclepro.2018.10.317
55.
Li
,
B. K.
,
Li
,
C. H.
,
Zhang
,
Y. B.
,
Wang
,
Y. G.
,
Jia
,
D. Z.
,
Yang
,
M.
,
Zhang
,
N. Q.
,
Wu
,
Q. D.
,
Han
,
Z. G.
, and
Sun
,
K.
,
2017
, “
Heat Transfer Performance of MQL Grinding With Different Nanofluids for Ni-Based Alloys Using Vegetable Oil
,”
J. Cleaner Prod.
,
154
, pp.
1
11
. 10.1016/j.jclepro.2017.03.213
56.
Kalita
,
P.
,
Malshe
,
A. P.
,
Kumar
,
S. A.
,
Yoganath
,
V. G.
, and
Gurumurthy
,
T.
,
2012
, “
Study of Specific Energy and Friction Coefficient in Minimum Quantity Lubrication Grinding Using Oil-Based Nanolubricants
,”
J. Manuf. Process.
,
14
(
2
), pp.
160
166
. 10.1016/j.jmapro.2012.01.001
57.
Li
,
B. K.
,
Li
,
C. H.
,
Zhang
,
Y. B.
,
Wang
,
Y. G.
,
Jia
,
D. Z.
, and
Yang
,
M.
,
2016
, “
Grinding Temperature and Energy Ratio Coefficient in MQL Grinding of High-Temperature Nickel-Base Alloy by Using Different Vegetable Oils as Base oil
,”
Chin. J. Aeronaut.
,
29
(
4
), pp.
1084
1095
. 10.1016/j.cja.2015.10.012
58.
Rabiei
,
F.
,
Rahimi
,
A. R.
, and
Hadad
,
M. J.
,
2017
, “
Performance Improvement of Eco-Friendly MQL Technique by Using Hybrid Nanofluid and Ultrasonic-Assisted Grinding
,”
Int. J. Adv. Manuf. Technol.
,
93
(
1–4
), pp.
1001
1015
. 10.1007/s00170-017-0521-9
You do not currently have access to this content.