Paper
28 July 2010 Vibration suppression for the Gemini Planet Imager
Joseph R. Maly, Darren Erickson, Timothy J. Pargett
Author Affiliations +
Abstract
The Gemini Planet Imager (GPi) is an instrument that will mount to either of two nominally identical Telescopes, Gemini North in Hawaii and Gemini South in Chile, to perform direct imaging and spectroscopy of extra-solar planets. This 2,000-kg instrument has stringent mass, center-of-gravity, flexure, and power constraints. The Flexure Sensitive Structure (FSS) supports the main opto-mechanical sub-systems of the GPi which work in series to process and analyse the telescope optical beam. The opto-mechanical sub-systems within the FSS are sensitive to mechanical vibrations, and passive damping strategies were considered to mitigate image jitter. Based on analysis with the system finite element model (FEM) of the GPi, an array of 1-kg tuned mass dampers (TMDs) was identified as an efficient approach to damp the first two FSS flexural modes which are the main sources of jitter. It is estimated that 5% of critical damping can be added to each of these modes with the addition of 23 kg of TMD mass. This estimate is based on installing TMD units on the FSS structural members. TMD mass can be reduced by nearly 50% if the units can be installed on the opto-mechanical sub-systems within the FSS with the highest modal displacements. This paper describes the structural design and vibration response of the FSS, modal test results, and plans for implementation of the TMDs. Modal measurements of the FSS structure were made to validate the FEM and to assess the viability of TMDs for reducing jitter. The test configuration differed from the operational one because some payloads were not present and the structure was mounted to a flexible base. However, this test was valuable for understanding the primary modes that will be addressed with the TMDs and measuring the effective mass of these modes.
© (2010) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Joseph R. Maly, Darren Erickson, and Timothy J. Pargett "Vibration suppression for the Gemini Planet Imager", Proc. SPIE 7733, Ground-based and Airborne Telescopes III, 77331F (28 July 2010); https://doi.org/10.1117/12.857699
Lens.org Logo
CITATIONS
Cited by 12 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Gemini Planet Imager

Finite element methods

Telescopes

Adaptive optics

Interfaces

Imaging spectroscopy

Gemini Observatory

RELATED CONTENT

Current and future instrumentation at Gemini Observatory
Proceedings of SPIE (August 29 2022)
A daily task manager for Paranal Science Operations
Proceedings of SPIE (July 15 2016)
The Gemini Planet Imager from science to design to...
Proceedings of SPIE (July 11 2008)
Gemini Observatory's facility instrument program
Proceedings of SPIE (March 07 2003)

Back to Top