Advertisement

Abstract

Premelting is the localized loss of crystalline order at surfaces and defects at temperatures below the bulk melting transition. It can be thought of as the nucleation of the melting process. Premelting has been observed at the surfaces of crystals but not within. We report observations of premelting at grain boundaries and dislocations within bulk colloidal crystals using real-time video microscopy. The crystals are equilibrium close-packed, three-dimensional colloidal structures made from thermally responsive microgel spheres. Particle tracking reveals increased disorder in crystalline regions bordering defects, the amount of which depends on the type of defect, distance from the defect, and particle volume fraction. Our observations suggest that interfacial free energy is the crucial parameter for premelting in colloidal and atomic-scale crystals.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

File (alsayed.movies1.avi)
File (alsayed.movies2.avi)
File (alsayed.movies3.avi)

References and Notes

1
H. Lowen, Phys. Rep.237, 249 (1994).
2
J. G. Dash, Rev. Mod. Phys.71, 1737 (1999).
3
J. G. Dash, H. Fu, J. S. Wettlaufer, Rep. Prog. Phys.58, 115 (1995).
4
R. W. Cahn, Nature413, 582 (2001).
5
F. A. Lindemann, Z. Phys.11, 609 (1910).
6
S. F. Edwards, M. Warner, Philos. Mag.40, 257 (1979).
7
L. Burakovsky, D. L. Preston, R. R. Silbar, Phys. Rev. B61, 15011 (2000).
8
R. Lipowsky, Phys. Rev. Lett.57, 2876 (1986).
9
G. Ciccotti, M. Guillope, V. Pontikis, Phys. Rev. B27, 5576 (1983).
10
W. A. Curtin, Phys. Rev. B39, 6775 (1989).
11
B. Pluis, D. Frenkel, J. F. van der Veen, Surf. Sci.239, 282 (1990).
12
R. Ohnesorge, H. Lowen, H. Wagner, Phys. Rev. E50, 4801 (1994).
13
R. Lipowsky, U. Breuer, K. C. Prince, H. P. Bonzel, Phys. Rev. Lett.62, 913 (1989).
14
R. W. Cahn, Nature323, 668 (1986).
15
M. S. Pettersen, M. J. Lysek, D. L. Goodstein, Phys. Rev. B40, 4938 (1989).
16
U. Dahmen, S. Hagege, F. Faudot, T. Radetic, E. Johnson, Philos. Mag.84, 2651 (2004).
17
J. W. M. Frenken, J. F. van der Veen, Phys. Rev. Lett.54, 134 (1985).
18
J. F. van der Veen, Surf. Sci.433-435, 1 (1999).
19
B. Pluis, A. W. D. van der Gon, J. W. M. Frenken, J. F. van der Veen, Phys. Rev. Lett.59, 2678 (1987).
20
J. Q. Broughton, G. Gilmer, Phys. Rev. Lett.56, 2692 (1986).
21
S. Phillpot, J. F. Lutsko, D. Wolf, S. Yip, Phys. Rev. B40, 2831 (1989).
22
M. Stieger, J. S. Pedersen, P. Lindner, W. Richtering, Langmuir20, 7283 (2004).
23
J. Zhu et al., Nature387, 883 (1997).
24
P. N. Pusey, W. van Megen, Nature320, 340 (1986).
25
S. B. Debord, L. A. Lyon, J. Phys. Chem. B107, 2927 (2003).
26
J. Wu, B. Zhou, Z. Hu, Phys. Rev. Lett.90, 048304 (2003).
27
A. M. Alsayed, M. F. Islam, A. G. Yodh, data not shown.
28
J. C. Crocker, D. G. Grier, J. Colloid Interface Sci.179, 298 (1996).
29
J. P. Hirth, J. Lothe, Theory of Dislocations (Wiley, New York, ed. 2, 1982).
30
P. Schall, I. Cohen, D. A. Weitz, F. Spaepen, Science305, 1944 (2004).
31
S. Pronk, D. Frenkel, J. Chem. Phys.110, 4589 (1999).
32
P. N. Pusey et al., Phys. Rev. Lett.63, 2753 (1989).
33
J. Bongers, H. Versmold, J. Chem. Phys.104, 1519 (1996).
34
Y. N. Ohshima, I. Nishio, J. Chem. Phys.114, 8649 (2001).
35
We thank T. Lubensky, D. Discher, R. Kamien, E. Burstein, C. Crouch, and T. Sinno for useful discussions. This work was supported by NSF through grants DMR-0203378 and DMR-079909 (Materials Research Science and Engineering Center) and by NASA (NAG8-2172). P.J.C. acknowledges the support of the American Chemical Society Petroleum Research Fund.

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 309 | Issue 5738
19 August 2005

Article versions

You are viewing the most recent version of this article.

Submission history

Received: 17 March 2005
Accepted: 24 May 2005
Published in print: 19 August 2005

Permissions

Request permissions for this article.

Notes

Supporting Online Material
www.sciencemag.org/cgi/content/full/1112399/DC1
Movies S1 to S3

Authors

Affiliations

A. M. Alsayed
Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104–6396, USA.
M. F. Islam
Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104–6396, USA.
J. Zhang
Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104–6396, USA.
P. J. Collings
Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104–6396, USA.
Department of Physics and Astronomy, Swarthmore College, Swarthmore, PA 19081–1397, USA.
Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104–6396, USA.

Notes

*
To whom correspondence should be addressed. E-mail: [email protected]

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Polymorphic crystalline wetting layers on crystal surfaces, Nature Physics, (2023).https://doi.org/10.1038/s41567-022-01923-2
    Crossref
  2. Probing Temperature Responsivity of Microgels and Its Interplay with a Solid Surface by Super-Resolution Microscopy and Numerical Simulations, ACS Nano, 17, 3, (2067-2078), (2023).https://doi.org/10.1021/acsnano.2c07569
    Crossref
  3. In situ single particle characterization of the themoresponsive and co-nonsolvent behavior of PNIPAM microgels and silica@PNIPAM core-shell colloids, Journal of Colloid and Interface Science, 635, (552-561), (2023).https://doi.org/10.1016/j.jcis.2022.12.116
    Crossref
  4. Computing grain boundary “phase” diagrams, Interdisciplinary Materials, 2, 1, (137-160), (2023).https://doi.org/10.1002/idm2.12067
    Crossref
  5. Structural Evolution of Single-Walled Carbon Nanotubes: Molecular Dynamics Simulation, Defect and Diffusion Forum, 419, (141-146), (2022).https://doi.org/10.4028/p-u63l7w
    Crossref
  6. Crystallization kinetics of charged PNIPAM microgels dispersions at low volume fractions, Frontiers in Physics, 10, (2022).https://doi.org/10.3389/fphy.2022.988903
    Crossref
  7. Identifying structural signature of dynamical heterogeneity via the local softness parameter, Physical Review E, 105, 4, (2022).https://doi.org/10.1103/PhysRevE.105.044604
    Crossref
  8. Universal Trend in the dynamic relaxations of tilted metastable grain boundaries during ultrafast thermal cycle, Materials Research Letters, 10, 6, (343-351), (2022).https://doi.org/10.1080/21663831.2022.2050957
    Crossref
  9. Observation of two-step melting on a sphere, Proceedings of the National Academy of Sciences, 119, 32, (2022).https://doi.org/10.1073/pnas.2206470119
    Crossref
  10. Defect-characterized phase transition kinetics, Applied Physics Reviews, 9, 4, (041311), (2022).https://doi.org/10.1063/5.0117234
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Purchase digital access to this article

Download and print this article for your personal scholarly, research, and educational use.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media