Advertisement
No access
Reports

Carbon Isotopic Evidence for Methane Hydrate Instability During Quaternary Interstadials

Science
7 Apr 2000
Vol 288, Issue 5463
pp. 128-133

Abstract

Large (about 5 per mil) millennial-scale benthic foraminiferal carbon isotopic oscillations in the Santa Barbara Basin during the last 60,000 years reflect widespread shoaling of sedimentary methane gradients and increased outgassing from gas hydrate dissociation during interstadials. Furthermore, several large, brief, negative excursions (up to –6 per mil) coinciding with smaller shifts (up to –3 per mil) in depth-stratified planktonic foraminiferal species indicate massive releases of methane from basin sediments. Gas hydrate stability was modulated by intermediate-water temperature changes induced by switches in thermohaline circulation. These oscillations were likely widespread along the California margin and elsewhere, affecting gas hydrate instability and contributing to millennial-scale atmospheric methane oscillations.

Get full access to this article

View all available purchase options and get full access to this article.

REFERENCES AND NOTES

1
Lorius C., et al., Nature 347, 139 (1990);
Chappellaz J., et al., Nature 345, 127 (1990);
Brook E. J., Sowers T., Orchardo J., Science 273, 1087 (1996).
2
Raynaud D., Chappellaz J., Blünier T., Geol. Soc. Spec. Publ. 137, 327 (1998).
3
Severinghaus J. P., et al., Nature 391, 141 (1998).
4
Salgado-Labouriau M. L., et al., Rev. Palaeobot. Palynol. 99, 115 (1998);
Ledru M.-P., Salgado-Labouriau M. L., Lorscheitter M. L., Rev. Palaeobot. Palynol. 99, 131 (1998);
Behling H., Hooghiemstra H., J. Paleolimnol. 21, 461 (1999);
Liu K., Qiu H., Terrest. Atmos. Oceanic Sci. 5, 393 (1994);
; M. G. Bonnefille and F. Chalié, Global Planet. Changes, in press; M. G. Winkler, P. R. Sanford, S. W. Kaplan, Bull. Am. Paleontol., in press.
5
Kvenvolden K. A., Global Biogeochem. Cycles 2, 221 (1988);
Paull C. K., et al., Geology 24, 143 (1996).
6
Kvenvolden K. A., Chem. Geol. 71, 41 (1988);
MacDonald G. T., Annu. Rev. Energy 15, 5 (1990);
Dickens G. R., et al., Nature 385, 426 (1997).
7
Kvenvolden K. A., Org. Geochem. 23, 997 (1995);
Cicerone R. J., Oremland R. S., Global Biogeochem. Cycles 2, 299 (1988).
8
Dickens G. R., Quinby-Hunt M. S., Geophys. Res. Lett. 21, 2115 (1994);
Brewer P. G., et al., Geology 25, 407 (1997).
9
Paull C. K., Ussler W., Geophys. Res. Lett. 18, 432 (1991);
Haq B. U., Geol. Soc. Spec. Publ. 137, 303 (1998).
10
Dickens G. R., et al., Paleoceanography 10, 965 (1995);
Katz M. E., et al., Science 286, 1531 (1999).
11
MacDonald I. R., et al., Geology 22, 699 (1994).
12
Kayen R. E., Lee H. J., Mar. Geotechnol. 10, 125 (1991);
Nisbet E. G., J. Geophys. Res. 97, 12859 (1992);
Evans D., et al., Mar. Geol. 130, 281 (1996);
Nisbet E. G., Piper D. J. W., Nature 392, 329 (1998);
; M. Maslin et al., in Proc. Ocean Drill. Program Sci. Results 155 (Ocean Drilling Program, College Station, TX, 1998), pp. 305–318;
Rothwell R. G., Thomson J., Kähler G., Nature 392, 377 (1998).
13
Maslin M., et al., Geology 26, 1107 (1998).
14
W. S. Reeburgh, S. C. Whalen, M. J. Alperin, in Microbial Growth on C1 Compounds, J. C. Murrell and D. P. Kelly, Eds. (Intercept, Andover, UK, 1993), pp. 1–14.
15
Behl R. J., Kennett J. P., Nature 379, 243 (1996).
16
Kennett J. P., Ingram B. L., Nature 377, 510 (1995).
17
Hendy I. L., Kennett J. P., Geology 27, 291 (1999);
; J. P. Kennett et al., Ocean Drill. Program, Leg 167 (Ocean Drilling Program, College Station, TX), in press.
18
Dansgaard W., et al., Nature 364, 218 (1993);
Johnsen S. J., et al., Nature 359, 311 (1992).
19
Cannariato K. G., Kennett J. P., Geology 27, 975 (1999);
Cannariato K. G., Kennett J. P., Behl R. J., Geology 27, 63 (1999).
20
I. L. Hendy and J. P. Kennett, in preparation.
21
Van Geen A., et al., Paleoceanography 11, 519 (1996).
22
Samples (2 cm thick, averaging 14 years) were taken every 5 to 7 cm (50 to 70 years). Sampling resolution is lower between 13 and 25 ka. From 8 to 40 planktonic and 5 to 10 benthic foraminifera were picked from each sample for analysis using a Finnigan/MAT 251 light stable isotope mass spectrometer and standard preparation techniques. Instrumental precision is <0.09‰ for both isotopes, with all data expressed as standard δ notation in ‰ relative to the Pee Dee Belemnite, related by repeated analysis to NBS-19 and NBS-20. The chronology is based on 17 accelerator mass spectrometry radiocarbon dates and three SPECMAP datums (15–17), as the ODP Hole 893A benthic foraminiferal δ18O record correlates well with the standard late Quaternary δ18O stratigraphy.
23
J. P. Kennett et al., Eds., Proc. Ocean Drill. Program Initial Reports 146 (part 2) (Ocean Drilling Program, College Station, TX, 1994); J. P. Kennett et al., Eds., Proc. Ocean Drill. Program Sci. Results146 (part 2) (Ocean Drilling Program, College Station, TX, 1994).
24
Properties of kerogen in Hole 893A suggest an episodic recycling of CH4 in basin sediments [L. M. Pratt, A. M. Carmo, V. Brüchert, S. M. Monk, J. M. Hayes, in J. P. Kennett et al., Eds., Proc. Ocean Drill. Program Sci. Results 146 (part 2) (Ocean Drilling Program, College Station, TX, 1994), pp. 213–218].
25
Yun J. W., Orange D. L., Field M. E., Mar. Geol. 154, 357 (1999).
26
Kennett J. P., Sorlien C. C., AAPG Bull. 83, 692 (1998).
27
Hendy I. L., Kennett J. P., Paleoceanography 15, 30 (2000).
28
The benthic δ13C record is based on several species since no benthic species ranges throughout the sequence because of extreme changes in basin oxygenation associated with D-O cycles. Overlap of a few species allows interspecies δ13C stadial-interstadial comparisons. For interstadials, we analyzed Bolivina argentea, Bolivina tumida, Buliminella tenuata, and Bolivina spissa; for stadials, we analyzed Uvigerina peregrina and Rutherfordoides rotundata. For short key intervals, we also analyzed Globobulimina auriculata, Buliminella subfusiformis, and Bolivina advena. We produced complete δ13C records of Globigerina bulloides (surface water) and Neogloboquadrina pachyderma (thermocline) [
Pak D., Kennett J. P., Kashgarian M., Eos 78, 359 (1997);
] and short records of Globigerina quinqueloba (surface water) and Globorotalia scitula (subthermocline) [
Ortiz J. D., Mix A. C., Collier R. W., Paleoceanography 10, 987 (1995);
Ortiz J. D., et al., Geochim. Cosmochim. Acta 60, 4509 (1996)].
29
J. P. Kennett and M. S. Srinivasan, Neogene Planktonic Foraminifera: A Phylogenetic Atlas (Hutchinson Ross, Stroudsburg, PA, 1983).
30
Overlapping taxonomic ranges between stadials and interstadials at some levels are reflected only by rare specimens that may be environmentally unrepresentative of that climatic episode.
31
Berger W. H., Vincent E., Geol. Rundsch. 75, 249 (1986).
32
McCorkle D. C., Emerson S. R., Geochim. Cosmochim. Acta 52, 1169 (1988);
McCorkle D. C., Klinkhammer G. P., Geochim. Cosmochim. Acta 55, 161 (1991);
Bernhard J. M., Sen Gupta B. K., Borne P. F., J. Foram. Res. 27, 301 (1997).
33
Zahn R., Winn K., Sarnthein M., Paleoceanography 1, 27 (1986);
McCorkle D. C., et al., Paleoceanography 5, 161 (1990);
Van der Zwaan G. J., et al., Earth Sci. Rev. 46, 213 (1999).
34
Wefer G., Heinze P. M., Berger W. H., Nature 369, 282 (1994).
35
Within the ocean, oxidation of CH4 to CO2 is carried out by methanotrophic bacteria (5), which decreases DIC δ13C values. Bicarbonate ion incorporation during shell growth transfers the negative δ13C value to foraminiferal CaCO3. Negative δ13C values may also be taken up by foraminifera through consumption of methanotrophic bacteria.
36
J. P. Kennett, unpublished data.
37
Barnes R. O., Goldberg E. E., Geology 4, 297 (1976);
Warford A. L., Kosiur D. R., Doose P. R., Geomicrobiol. J. 1, 117 (1979).
38
Borowski W. S., Paull C. K., Ussler W., Geology 24, 655 (1996).
39
Cynar F. J., Yayanos A. A., J. Geophys. Res. 97, 11269 (1992).
40
Gornitz V., Fung I., Global Biogeochem. Cycles 8, 335 (1994).
41
Y. Zhang, personal communication.
42
Chappell J., et al., Earth Planet. Sci. Lett. 141, 227 (1996).
43
The amount of CH4 responsible for changing the δ13C of DIC of entire water column (∼500 m) by ∼3‰ (the average foraminiferal isotopic change during the 44.1-ka excursion) can be calculated from this relationship: δ13CCH4(CCH4) + δ13CDIC before(CDIC before) = δ13CDIC after(CDIC after). The calculation for instantaneous carbon transfer assumes basin volume of 850 km3; methane δ13C of −65‰; and DIC of 2000 μmol/kg. The time-dependent calculation assumes an event duration of 14 years; residence time of surface waters in Santa Barbara Channel of 30 days. We infer a longer residence time compared with the present day (∼10 days) [M. C. Henderscott, Fifth California Islands Symposium, 29 March to 1 April 1999, Santa Barbara, p. 21;
Harms S., Winant C. D., J. Geophys. Res. 103, 3041 (1998);
] because of the location of Site 893A near the center of the basin gyre.
44
M. A. K. Khalil and R. A. Rasmussen, in Composition, Chemistry, and Climate of the Atmosphere, H. B. Singh, Ed. (Van Nostrand Reinhold, New York, 1995), pp. 50–87.
45
Stauffer R., et al., Nature 392, 59 (1998).
46
Nisbet E. G., Can. J. Earth Sci. 27, 148 (1990).
47
Field M. E., Kvenvolden K. A., Geology 13, 517 (1985);
Brooks J. M., Field M. E., Kennicutt M. C., Mar. Geol. 96, 103 (1991);
Brewer P. G., et al., Eos 78, 340 (1997).
48
Lonsdale P., AAPG Bull. 69, 1160 (1985).
49
We thank personnel of the Ocean Drilling Program for their efforts during drilling and assistance with sampling. We also thank D. Krause for encouragement and enlightening discussions during this work and for review of the manuscript. Critical inspiration came from the work of E. Nisbet and G. Dickens. We thank two anonymous reviewers for constructive advice. Careful technical assistance was provided by K. Thompson and H. Berg. Supported by NSF grant EAR99-0424 (Earth System History) and an NSF Fellowship to I.L.H. Twenty-five percent of this research was funded by the National Institute for Global Environmental Change through the U.S. Department of Energy (DOE) (Cooperative Agreement DE-FC03-90ER61010). Conclusions expressed in this publication are those of the authors and do not necessarily reflect the views of the DOE.

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 288 | Issue 5463
7 April 2000

Submission history

Received: 18 October 1999
Accepted: 23 February 2000
Published in print: 7 April 2000

Permissions

Request permissions for this article.

Authors

Affiliations

James P. Kennett*
Geological Sciences and Marine Science Institute, University of California, Santa Barbara, CA 93106, USA.
Kevin G. Cannariato
Geological Sciences and Marine Science Institute, University of California, Santa Barbara, CA 93106, USA.
Ingrid L. Hendy
Geological Sciences and Marine Science Institute, University of California, Santa Barbara, CA 93106, USA.
Richard J. Behl
Department of Geological Sciences, California State University, Long Beach, CA 90840, USA.

Notes

*
To whom correspondence should be addressed. E-mail: [email protected]

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Shifting Gear, Quickly, Science, 324, 5926, (477-478), (2021)./doi/10.1126/science.1172001
    Abstract
  2. 14CH4 Measurements in Greenland Ice: Investigating Last Glacial Termination CH4 Sources, Science, 324, 5926, (506-508), (2021)./doi/10.1126/science.1168909
    Abstract
  3. Abrupt Tropical Vegetation Response to Rapid Climate Changes, Science, 304, 5679, (1955-1959), (2021)./doi/10.1126/science.1092995
    Abstract
  4. A Methane Trigger for Rapid Warming?, Science, 299, 5609, (1017-1017), (2021)./doi/10.1126/science.1080789
    Abstract
  5. Molecular Fossil Record of Elevated Methane Levels in Late Pleistocene Coastal Waters, Science, 299, 5610, (1214-1217), (2021)./doi/10.1126/science.1079601
    Abstract
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media