Advertisement

Structural Differences

The proinflammatory cytokine tumor necrosis factor (TNF) functions in the immune response; however, TNF also plays a pathophysiological role in diseases such as rheumatoid arthritis and Crohn’s disease. The effects of TNF are mediated by TNF receptor 1 (TNFR1) and TNFR2; whereas TNFR1 is ubiquitously expressed, TNFR2 is mostly restricted to cells of the immune system. Currently available therapies that block TNF include monoclonal antibodies against TNF and a soluble form of TNFR2; however, these therapies can result in serious side effects, some of which may be due to their nonselective effects. Here, Mukai et al. solved the structure of TNF in complex with TNFR2 and found differences between the ligand-binding interface of TNFR2 and that of TNFR1, whose structure is known. The authors also observed the formation of TNF-TNFR2 aggregates on the surface of transfected cells, which may be required for signal initiation. Solution of the TNFR2 structure may aid in the development of receptor-specific therapies.

Abstract

Tumor necrosis factor (TNF) is an inflammatory cytokine that has important roles in various immune responses, which are mediated through its two receptors, TNF receptor 1 (TNFR1) and TNFR2. Antibody-based therapy against TNF is used clinically to treat several chronic autoimmune diseases; however, such treatment sometimes results in serious side effects, which are thought to be caused by the blocking of signals from both TNFRs. Therefore, knowledge of the structural basis for the recognition of TNF by each receptor would be invaluable in designing TNFR-selective drugs. Here, we solved the 3.0 angstrom resolution structure of the TNF-TNFR2 complex, which provided insight into the molecular recognition of TNF by TNFR2. Comparison to the known TNFR1 structure highlighted several differences between the ligand-binding interfaces of the two receptors. Additionally, we also demonstrated that TNF-TNFR2 formed aggregates on the surface of cells, which may be required for signal initiation. These results may contribute to the design of therapeutics for autoimmune diseases.

Get full access to this article

View all available purchase options and get full access to this article.

References and Notes

1
Aggarwal B. B., Signalling pathways of the TNF superfamily: A double-edged sword. Nat. Rev. Immunol. 3, 745–756 (2003).
2
Kooloos W. M., de Jong D. J., Huizinga T. W., Guchelaar H. J., Potential role of pharmacogenetics in anti-TNF treatment of rheumatoid arthritis and Crohn’s disease. Drug Discov. Today 12, 125–131 (2007).
3
Rutgeerts P., Van Assche G., Vermeire S., Optimizing anti-TNF treatment in inflammatory bowel disease. Gastroenterology 126, 1593–1610 (2004).
4
Feldmann M., Maini R. N., Lasker Clinical Medical Research Award. TNF defined as a therapeutic target for rheumatoid arthritis and other autoimmune diseases. Nat. Med. 9, 1245–1250 (2003).
5
Tansey M. G., Szymkowski D. E., The TNF superfamily in 2009: New pathways, new indications, and new drugs. Drug Discov. Today 14, 1082–1088 (2009).
6
Williams R. O., Feldmann M., Maini R. N., Anti-tumor necrosis factor ameliorates joint disease in murine collagen-induced arthritis. Proc. Natl. Acad. Sci. U.S.A. 89, 9784–9788 (1992).
7
Thorbecke G. J., Shah R., Leu C. H., Kuruvilla A. P., Hardison A. M., Palladino M. A., Involvement of endogenous tumor necrosis factor α and transforming growth factor β during induction of collagen type II arthritis in mice. Proc. Natl. Acad. Sci. U.S.A. 89, 7375–7379 (1992).
8
Lubel J. S., Testro A. G., Angus P. W., Hepatitis B virus reactivation following immunosuppressive therapy: Guidelines for prevention and management. Intern. Med. J. 37, 705–712 (2007).
9
Gomez-Reino J. J., Carmona L., Valverde V. R., Mola E. M., Montero M. D.BIOBADASER Group, Treatment of rheumatoid arthritis with tumor necrosis factor inhibitors may predispose to significant increase in tuberculosis risk: A multicenter active-surveillance report. Arthritis Rheum. 48, 2122–2127 (2003).
10
Brown S. L., Greene M. H., Gershon S. K., Edwards E. T., Braun M. M., Tumor necrosis factor antagonist therapy and lymphoma development: Twenty-six cases reported to the Food and Drug Administration. Arthritis Rheum. 46, 3151–3158 (2002).
11
Faustman D., Davis M., TNF receptor 2 pathway: Drug target for autoimmune diseases. Nat. Rev. Drug Discov. 9, 482–493 (2010).
12
Mori L., Iselin S., De Libero G., Lesslauer W., Attenuation of collagen-induced arthritis in 55-kDa TNF receptor type 1 (TNFR1)-IgG1-treated and TNFR1-deficient mice. J. Immunol. 157, 3178–3182 (1996).
13
Leist M., Gantner F., Jilg S., Wendel A., Activation of the 55 kDa TNF receptor is necessary and sufficient for TNF-induced liver failure, hepatocyte apoptosis, and nitrite release. J. Immunol. 154, 1307–1316 (1995).
14
Kim E. Y., Priatel J. J., Teh S. J., Teh H. S., TNF receptor type 2 (p75) functions as a costimulator for antigen-driven T cell responses in vivo. J. Immunol. 176, 1026–1035 (2006).
15
Kim E. Y., Teh H. S., TNF type 2 receptor (p75) lowers the threshold of T cell activation. J. Immunol. 167, 6812–6820 (2001).
16
Grell M., Becke F. M., Wajant H., Mannel D. N., Scheurich P., TNF receptor type 2 mediates thymocyte proliferation independently of TNF receptor type 1. Eur. J. Immunol. 28, 257–263 (1998).
17
Grell M., Douni E., Wajant H., Lohden M., Clauss M., Maxeiner B., Georgopoulos S., Lesslauer W., Kollias G., Pfizenmaier K., Scheurich P., The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor. Cell 83, 793–802 (1995).
18
Saunders B. M., Tran S., Ruuls S., Sedgwick J. D., Briscoe H., Britton W. J., Transmembrane TNF is sufficient to initiate cell migration and granuloma formation and provide acute, but not long-term, control of Mycobacterium tuberculosis infection. J. Immunol. 174, 4852–4859 (2005).
19
Olleros M. L., Guler R., Corazza N., Vesin D., Eugster H. P., Marchal G., Chavarot P., Mueller C., Garcia I., Transmembrane TNF induces an efficient cell-mediated immunity and resistance to Mycobacterium bovis bacillus Calmette-Guerin infection in the absence of secreted TNF and lymphotoxin-α. J. Immunol. 168, 3394–3401 (2002).
20
Chen X., Baumel M., Mannel D. N., Howard O. M., Oppenheim J. J., Interaction of TNF with TNF receptor type 2 promotes expansion and function of mouse CD4+CD25+ T regulatory cells. J. Immunol. 179, 154–161 (2007).
21
Kontermann R. E., Scheurich P., Pfizenmaier K., Antagonists of TNF action: Clinical experience and new developments. Expert Opin. Drug Discov. 4, 279–292 (2009).
22
Kollias G., Kontoyiannis D., Role of TNF/TNFR in autoimmunity: Specific TNF receptor blockade may be advantageous to anti-TNF treatments. Cytokine Growth Factor Rev. 13, 315–321 (2002).
23
Banner D. W., D’Arcy A., Janes W., Gentz R., Schoenfeld H. J., Broger C., Loetscher H., Lesslauer W., Crystal structure of the soluble human 55 kd TNF receptor-human TNFβ complex: Implications for TNF receptor activation. Cell 73, 431–445 (1993).
24
Jones E. Y., Stuart D. I., Walker N. P., Structure of tumour necrosis factor. Nature 338, 225–228 (1989).
25
Eck M. J., Sprang S. R., The structure of tumor necrosis factor-α at 2.6 Å resolution. Implications for receptor binding. J. Biol. Chem. 264, 17595–17605 (1989).
26
Cha S. S., Sung B. J., Kim Y. A., Song Y. L., Kim H. J., Kim S., Lee M. S., Oh B. H., Crystal structure of TRAIL-DR5 complex identifies a critical role of the unique frame insertion in conferring recognition specificity. J. Biol. Chem. 275, 31171–31177 (2000).
27
Mongkolsapaya J., Grimes J. M., Chen N., Xu X. N., Stuart D. I., Jones E. Y., Screaton G. R., Structure of the TRAIL-DR5 complex reveals mechanisms conferring specificity in apoptotic initiation. Nat. Struct. Biol. 6, 1048–1053 (1999).
28
Hymowitz S. G., Christinger H. W., Fuh G., Ultsch M., O’Connell M., Kelley R. F., Ashkenazi A., de Vos A. M., Triggering cell death: The crystal structure of Apo2L/TRAIL in a complex with death receptor 5. Mol. Cell 4, 563–571 (1999).
29
Compaan D. M., Hymowitz S. G., The crystal structure of the costimulatory OX40-OX40L complex. Structure 14, 1321–1330 (2006).
30
Yang Z., West A. P., Bjorkman P. J., Crystal structure of TNFα complexed with a poxvirus MHC-related TNF binding protein. Nat. Struct. Mol. Biol. 16, 1189–1191 (2009).
31
Rahman M. M., Lucas A. R., McFadden G., Viral TNF inhibitors as potential therapeutics. Adv. Exp. Med. Biol. 666, 64–77 (2009).
32
Siegel R. M., Frederiksen J. K., Zacharias D. A., Chan F. K., Johnson M., Lynch D., Tsien R. Y., Lenardo M. J., Fas preassociation required for apoptosis signaling and dominant inhibition by pathogenic mutations. Science 288, 2354–2357 (2000).
33
Chan F. K., Chun H. J., Zheng L., Siegel R. M., Bui K. L., Lenardo M. J., A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling. Science 288, 2351–2354 (2000).
34
Sedger L. M., Osvath S. R., Xu X. M., Li G., Chan F. K., Barrett J. W., McFadden G., Poxvirus tumor necrosis factor receptor (TNFR)-like T2 proteins contain a conserved preligand assembly domain that inhibits cellular TNFR1-induced cell death. J. Virol. 80, 9300–9309 (2006).
35
Clancy L., Mruk K., Archer K., Woelfel M., Mongkolsapaya J., Screaton G., Lenardo M. J., Chan F. K., Preligand assembly domain-mediated ligand-independent association between TRAIL receptor 4 (TR4) and TR2 regulates TRAIL-induced apoptosis. Proc. Natl. Acad. Sci. U.S.A. 102, 18099–18104 (2005).
36
Kramer J. M., Hanel W., Shen F., Isik N., Malone J. P., Maitra A., Sigurdson W., Swart D., Tocker J., Jin T., Gaffen S. L., Cutting edge: Identification of a pre-ligand assembly domain (PLAD) and ligand binding site in the IL-17 receptor. J. Immunol. 179, 6379–6383 (2007).
37
Deng G. M., Zheng L., Chan F. K., Lenardo M., Amelioration of inflammatory arthritis by targeting the pre-ligand assembly domain of tumor necrosis factor receptors. Nat. Med. 11, 1066–1072 (2005).
38
Mukai Y., Nakamura T., Yoshioka Y., Tsunoda S., Kamada H., Nakagawa S., Yamagata Y., Tsutsumi Y., Crystallization and preliminary x-ray analysis of the tumour necrosis factor α-tumour necrosis factor receptor type 2 complex. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 65, 295–298 (2009).
39
Shibata H., Yoshioka Y., Ohkawa A., Minowa K., Mukai Y., Abe Y., Taniai M., Nomura T., Kayamuro H., Nabeshi H., Sugita T., Imai S., Nagano K., Yoshikawa T., Fujita T., Nakagawa S., Yamamoto A., Ohta T., Hayakawa T., Mayumi T., Vandenabeele P., Aggarwal B. B., Nakamura T., Yamagata Y., Tsunoda S., Kamada H., Tsutsumi Y., Creation and x-ray structure analysis of the tumor necrosis factor receptor-1-selective mutant of a tumor necrosis factor-α antagonist. J. Biol. Chem. 283, 998–1007 (2008).
40
Yamamoto Y., Tsutsumi Y., Yoshioka Y., Nishibata T., Kobayashi K., Okamoto T., Mukai Y., Shimizu T., Nakagawa S., Nagata S., Mayumi T., Site-specific PEGylation of a lysine-deficient TNF-α with full bioactivity. Nat. Biotechnol. 21, 546–552 (2003).
41
Oregon-Romero E., Vazquez-Del Mercado M., Navarro-Hernandez R. E., Torres-Carrillo N., Martinez-Bonilla G., Estrada-Garcia I., Rangel-Villalobos H., Munoz-Valle J. F., Tumor necrosis factor receptor 2 M196R polymorphism in rheumatoid arthritis and osteoarthritis: Relationship with sTNFR2 levels and clinical features. Rheumatol. Int. 27, 53–59 (2006).
42
Morita C., Horiuchi T., Tsukamoto H., Hatta N., Kikuchi Y., Arinobu Y., Otsuka T., Sawabe T., Harashima S., Nagasawa K., Niho Y., Association of tumor necrosis factor receptor type II polymorphism 196R with systemic lupus erythematosus in the Japanese: Molecular and functional analysis. Arthritis Rheum. 44, 2819–2827 (2001).
43
Tsuchiya N., Komata T., Matsushita M., Ohashi J., Tokunaga K., New single nucleotide polymorphisms in the coding region of human TNFR2: Association with systemic lupus erythematosus. Genes Immun. 1, 501–503 (2000).
44
Naismith J. H., Sprang S. R., Modularity in the TNF-receptor family. Trends Biochem. Sci. 23, 74–79 (1998).
45
Graham S. C., Bahar M. W., Abrescia N. G., Smith G. L., Stuart D. I., Grimes J. M., Structure of CrmE, a virus-encoded tumour necrosis factor receptor. J. Mol. Biol. 372, 660–671 (2007).
46
Mukai Y., Shibata H., Nakamura T., Yoshioka Y., Abe Y., Nomura T., Taniai M., Ohta T., Ikemizu S., Nakagawa S., Tsunoda S., Kamada H., Yamagata Y., Tsutsumi Y., Structure–function relationship of tumor necrosis factor (TNF) and its receptor interaction based on 3D structural analysis of a fully active TNFR1-selective TNF mutant. J. Mol. Biol. 385, 1221–1229 (2009).
47
Reed C., Fu Z. Q., Wu J., Xue Y. N., Harrison R. W., Chen M. J., Weber I. T., Crystal structure of TNF-α mutant R31D with greater affinity for receptor R1 compared with R2. Protein Eng. 10, 1101–1107 (1997).
48
Van Ostade X., Tavernier J., Fiers W., Structure-activity studies of human tumour necrosis factors. Protein Eng. 7, 5–22 (1994).
49
Loetscher H., Stueber D., Banner D., Mackay F., Lesslauer W., Human tumor necrosis factor α (TNF α) mutants with exclusive specificity for the 55-kDa or 75-kDa TNF receptors. J. Biol. Chem. 268, 26350–26357 (1993).
50
Mukai Y., Nakamura T., Yoshioka Y., Shibata H., Abe Y., Nomura T., Taniai M., Ohta T., Nakagawa S., Tsunoda S., Kamada H., Yamagata Y., Tsutsumi Y., Fast binding kinetics and conserved 3D structure underlie the antagonistic activity of mutant TNF: Useful information for designing artificial proteo-antagonists. J. Biochem. 146, 167–172 (2009).
51
Shibata H., Yoshioka Y., Ohkawa A., Abe Y., Nomura T., Mukai Y., Nakagawa S., Taniai M., Ohta T., Mayumi T., Kamada H., Tsunoda S., Tsutsumi Y., The therapeutic effect of TNFR1-selective antagonistic mutant TNF-α in murine hepatitis models. Cytokine 44, 229–233 (2008).
52
DeLano W. L., Ultsch M. H., de Vos A. M., Wells J. A., Convergent solutions to binding at a protein-protein interface. Science 287, 1279–1283 (2000).
53
Steed P. M., Tansey M. G., Zalevsky J., Zhukovsky E. A., Desjarlais J. R., Szymkowski D. E., Abbott C., Carmichael D., Chan C., Cherry L., Cheung P., Chirino A. J., Chung H. H., Doberstein S. K., Eivazi A., Filikov A. V., Gao S. X., Hubert R. S., Hwang M., Hyun L., Kashi S., Kim A., Kim E., Kung J., Martinez S. P., Muchhal U. S., Nguyen D. H., O’Brien C., O’Keefe D., Singer K., Vafa O., Vielmetter J., Yoder S. C., Dahiyat B. I., Inactivation of TNF signaling by rationally designed dominant-negative TNF variants. Science 301, 1895–1898 (2003).
54
Naismith J. H., Devine T. Q., Brandhuber B. J., Sprang S. R., Crystallographic evidence for dimerization of unliganded tumor necrosis factor receptor. J. Biol. Chem. 270, 13303–13307 (1995).
55
Naismith J. H., Devine T. Q., Kohno T., Sprang S. R., Structures of the extracellular domain of the type I tumor necrosis factor receptor. Structure 4, 1251–1262 (1996).
56
Chan F. K., Three is better than one: Pre-ligand receptor assembly in the regulation of TNF receptor signaling. Cytokine 37, 101–107 (2007).
57
Park Y. C., Burkitt V., Villa A. R., Tong L., Wu H., Structural basis for self-association and receptor recognition of human TRAF2. Nature 398, 533–538 (1999).
58
Yin Q., Lin S. C., Lamothe B., Lu M., Lo Y. C., Hura G., Zheng L., Rich R. L., Campos A. D., Myszka D. G., Lenardo M. J., Darnay B. G., Wu H., E2 interaction and dimerization in the crystal structure of TRAF6. Nat. Struct. Mol. Biol. 16, 658–666 (2009).
59
Otwinowski Z., Minor W., Processing of x-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).
60
Vagin A., Teplyakov A., MOLREP: An automated program for molecular replacement. J. Appl. Crystallogr. 30, 1022–1025 (1997).
61
Potterton E., Briggs P., Turkenburg M., Dodson E., A graphical user interface to the CCP4 program suite. Acta Crystallogr. D Biol. Crystallogr. 59, 1131–1137 (2003).
62
Brünger A. T., Adams P. D., Clore G. M., DeLano W. L., Gros P., Grosse-Kunstleve R. W., Jiang J. S., Kuszewski J., Nilges M., Pannu N. S., Read R. J., Rice L. M., Simonson T., Warren G. L., Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).
63
Emsley P., Cowtan K., Coot: Model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).
64
Adams P. D., Grosse-Kunstleve R. W., Hung L. W., Ioerger T. R., McCoy A. J., Moriarty N. W., Read R. J., Sacchettini J. C., Sauter N. K., Terwilliger T. C., PHENIX: Building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954 (2002).
65
Lovell S. C., Davis I. W., Arendall W. B., de Bakker P. I., Word J. M., Prisant M. G., Richardson J. S., Richardson D. C., Structure validation by Cα geometry: ϕ,ψ and Cβ deviation. Proteins 50, 437–450 (2003).
66
W. L. DeLano, The PyMOL Molecular Graphics System (DeLano Scientific, San Carlos, CA, 2002), http://www.pymol.org.
67
Krissinel E., Henrick K., Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr. D Biol. Crystallogr. 60, 2256–2268 (2004).
68
Thompson J. D., Higgins D. G., Gibson T. J., CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).
69
Nicholls A., Sharp K. A., Honig B., Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science Signaling
Volume 3 | Issue 148
November 2010

Submission history

Received: 24 February 2010
Accepted: 29 October 2010

Permissions

Request permissions for this article.

Acknowledgments

Acknowledgments: We thank T. Mayumi for his advice about this research. Funding: This study was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan and from the Japan Society for the Promotion of Science. This study was also supported in part by Health Labour Sciences Research Grants from the Ministry of Health, Labor and Welfare of Japan; Health Sciences Research Grants for Research on Publicly Essential Drugs and Medical Devices from the Japan Health Sciences Foundation; and The Nagai Foundation Tokyo. Author contributions: Y.M., S.T., and Y.T. designed the research; Y.M., T.N., and M.Y. performed the research; Y.M., T.N., and Y. Yamagata analyzed the data; Y. Yoshioka and S.N. contributed new reagents; and Y.M., Y. Yamagata, and Y.T. wrote the paper. Competing interests: The authors declare that they have no competing interests. Accession numbers: Coordinates and structure factors have been deposited in the PDB with the accession number 3alq.

Authors

Affiliations

Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, Osaka 567-0085, Japan.
Department of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan.
Teruya Nakamura
Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan.
Mai Yoshikawa
Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, Osaka 567-0085, Japan.
Department of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan.
Yasuo Yoshioka
Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, Osaka 567-0085, Japan.
Department of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan.
Center for Advanced Medical Engineering and Informatics, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
Shin-ichi Tsunoda* [email protected]
Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, Osaka 567-0085, Japan.
Center for Advanced Medical Engineering and Informatics, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
Department of Biomedical Innovation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan.
Shinsaku Nakagawa
Department of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan.
Yuriko Yamagata
Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan.
Yasuo Tsutsumi* [email protected]
Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, Osaka 567-0085, Japan.
Center for Advanced Medical Engineering and Informatics, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
Department of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan.

Notes

*
To whom correspondence should be addressed. E-mail: [email protected] (Y.M.); [email protected] (S.T.); [email protected] (Y.T.).

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. The Tumor Necrosis Factor Receptor Stalk Regions Define Responsiveness to Soluble versus Membrane-Bound Ligand, Molecular and Cellular Biology, 32, 13, (2515-2529), (2023).https://doi.org/10.1128/MCB.06458-11
    Crossref
  2. Structural insights into pathogenic mechanism of hypohidrotic ectodermal dysplasia caused by ectodysplasin A variants, Nature Communications, 14, 1, (2023).https://doi.org/10.1038/s41467-023-36367-6
    Crossref
  3. Targeting Tumor Necrosis Factor Receptor 1 with Selected Aptamers for Anti-Inflammatory Activity, ACS Applied Materials & Interfaces, 15, 9, (11599-11608), (2023).https://doi.org/10.1021/acsami.3c00131
    Crossref
  4. Discovery of a Non-competitive TNFR1 Antagonist Affibody with Picomolar Monovalent Potency That Does Not Affect TNFR2 Function, Molecular Pharmaceutics, 20, 4, (1884-1897), (2023).https://doi.org/10.1021/acs.molpharmaceut.2c00385
    Crossref
  5. Small-molecule modulators of tumor necrosis factor signaling, Drug Discovery Today, (103575), (2023).https://doi.org/10.1016/j.drudis.2023.103575
    Crossref
  6. Computational analyses of the interactome between TNF and TNFR superfamilies, Computational Biology and Chemistry, 103, (107823), (2023).https://doi.org/10.1016/j.compbiolchem.2023.107823
    Crossref
  7. Tumor Necrosis Factor Receptor 2 (TNFR2): An Emerging Target in Cancer Therapy, Cancers, 14, 11, (2603), (2022).https://doi.org/10.3390/cancers14112603
    Crossref
  8. Targeting TNFR2: A Novel Breakthrough in the Treatment of Cancer, Frontiers in Oncology, 12, (2022).https://doi.org/10.3389/fonc.2022.862154
    Crossref
  9. The dichotomous outcomes of TNFα signaling in CD4+ T cells, Frontiers in Immunology, 13, (2022).https://doi.org/10.3389/fimmu.2022.1042622
    Crossref
  10. Functional Study of TNFR2 Signaling and Drug Discovery Using a Protein Engineering Approachタンパク質機能改変技術による2型TNF受容体シグナルのユニーク性の解析と創薬応用, YAKUGAKU ZASSHI, 142, 12, (1297-1305), (2022).https://doi.org/10.1248/yakushi.22-00171
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media