Skip to main content
Log in

HgSe:Fe—a mixed-valency system and the problem of the ground state

  • Semiconductors and Insulators
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The dependence of the electron mobility on the iron impurity content N Fe and temperature is studied for three variants of the ordering of Fe3+ ions in crystalline HgSe:Fe, a weakly correlated gas, states with near ordering like that in a strongly correlated Coulomb liquid, and long-range ordering. The electron mobilities owing to scattering on the correlated system of Fe3+ ions are determined. The temperature dependence of the mobility is analyzed for electron scattering on fluctuations in the charge density in a system of Fe2+-Fe3+ iron ions with mixed valency, and the correlation length is determined. It is shown that the ordering region for the Fe3+ ions encompasses only the first coordination sphere, i.e., near ordering in the position of the Fe3+ ions is established, as in a liquid. The coupling between the ordering of the Fe3+ ions and the formation of a correlation gap in the density of impurity d-states and its effect on the low-temperature behavior of the electron mobility in HgSe:Fe crystals are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. I. Khomskii, Usp. Fiz. Nauk 129, 443 (1979) [Sov. Phys. Usp. 22, 379 (1979)].

    Google Scholar 

  2. I. M. Tsidil’kovskii, Usp. Fiz. Nauk 162, 63 (1992) [Sov. Phys. Uspekhi 35, 85 (1992)].

    Google Scholar 

  3. F. S. Pool, J. Kossut, U. Debska, and R. Reifenberger, Phys. Rev. B 35, 3900 (1987).

    Article  ADS  Google Scholar 

  4. I. G. Kuleev, I. I. Lyapilin, A. T. Lonchakov, and I. M. Tsidil’kovskii, Zh. Éksp. Teor. Fiz. 102, 63 (1992) [Sov. Phys. JETP 75, 893 (1992)].

    Google Scholar 

  5. I. G. Kuleev, I. I. Lyapilin, A. T. Lonchakov, and I. M. Tsidil’kovskii, Zh. Éksp. Teor. Fiz. 103, 1447 (1993) [JETP 76, 707 (1993)].

    Google Scholar 

  6. I. G. Kuleev, I. I. Lyapilin, A. T. Lonchakov, and I. M. Tsidil’kovskii, Fiz. Tekhn. Poluprovodn. 28, 937 (1994) [Semiconductors 28, 544 (1994)].

    Google Scholar 

  7. I. G. Kuleev, I. I. Lyapilin, A. T. Lonchakov, and I. M. Tsidil’kovskii, Zh. Éksp. Teor. Fiz. 106, 1205 (1994) [JETP 79, 653 (1994)].

    Google Scholar 

  8. I. G. Kuleyev, I. I. Lyapilin, A. T. Lonchakov, and I. M. Tsidilkovskii, Semiconductors 10, 314 (1995).

    Google Scholar 

  9. J. Mycielski, Solid State Commun. 60, 165 (1986).

    Article  Google Scholar 

  10. Z. Wilamowski, K. Swaitek, T. Dietl, and J. Kossut, Solid State Commun. 74, 833 (1990).

    Article  Google Scholar 

  11. Z. Wilamowski, Acta Phys. Polon. A 77, 133 (1990).

    Google Scholar 

  12. Z. Wilamowski, A. Micelski, W. Jantsch, and G. Hendorfer, Acta Phys. Polon. A 77, 133 (1990).

    Google Scholar 

  13. B. I. Shklovskii and A. L. Éfros, Electronic Properties of Doped Semiconductors, Springer, N.Y. (1984).

    Google Scholar 

  14. V. L. Nguen, M. É. Raikh, and A. L. Éfros, Fiz. Tverd. Tela 28, 2019 (1986) [Sov. Phys. Solid State 28, 1129 (1986)].

    Google Scholar 

  15. J. Ziman, Models of Disorder, Cambridge Univ. Press (1979).

  16. I. G. Kuleev, Fiz. Tverd. Tela 39, 250 (1997) [Phys. Solid State 39, 219 (1997)].

    Google Scholar 

  17. E. I. Khar’kov, V. I. Lysov, and V. E. Fedorov, The Physics of Fluid Materials [in Russian], Vishcha Shk., Kiev (1979).

    Google Scholar 

  18. N. N. Ablyazov and A. L. Éfros, Zh. Éksp. Teor. Fiz. 95, 1450 (1989) [Sov. Phys. JETP 68, 837 (1989)].

    Google Scholar 

  19. I. M. Tsidil’kovskii, I. G. Kuleev, and I. I. Lyapilin, Zh. Éksp. Teor. Fiz. 102, 26 (1992) [JETP 75, 14 (1992)].

    Google Scholar 

  20. I. G. Kuleev, I. I. Lyapilin, and I. M. Tsidil’kovskii, Fiz. Tverd. Tela 37, 2360 (1995) [Phys. Solid State 37, 1291 (1995)].

    Google Scholar 

  21. L. S. Ornsetin and F. Zernicke, Proc. Acad. Sci. Amsterdam 17, 793 (1914).

    Google Scholar 

  22. E. L. Pollock and J. P. Hansen, Phys. Rev. A 8, 3110 (1973).

    Article  ADS  Google Scholar 

  23. W. Ebeling, W. Kraeft, and D. Kremp, Theory of Bound States and Ionization Equilibrium in Plasmas and Solids, Akademie Verlag, Berlin (1976).

    Google Scholar 

  24. T. Dietl and W. Szymanska, J. Phys. Chem. Solids 39, 1041 (1978).

    Google Scholar 

  25. I. G. Kuleev, N. K. Lerinman, I. I. Lyapilin, L. D. Sabrizyanova, and I. M. Tsidil’kovskii, Fiz. Tekhn. Poluprovodn. 27, 519 (1993) [Semiconductors 27, 292 (1993)].

    Google Scholar 

  26. Amorphous Metal Alloys [in Russian], Metallurgiya, Moscow (1987).

  27. N. H. March, R. A. Street, and M. Tosi, Eds., Amorphous Solids and the Liquid State, Plenum, N.Y. (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Fiz. Tverd. Tela (St. Petersburg) 40, 425–432 (March 1998)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuleev, I.G. HgSe:Fe—a mixed-valency system and the problem of the ground state. Phys. Solid State 40, 389–395 (1998). https://doi.org/10.1134/1.1130330

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1130330

Keywords

Navigation