Skip to main content
Log in

Intercalated hydrogen in yttrium barium cuprate: The state and mobility of a “Guest” and modification of the “Host” properties

  • Metals and Superconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The electric, magnetic, and physicochemical properties of yttrium barium hydrocuprate (H2YBa2Cu3O7) and its oxidized form (H2YBa2Cu3O7.8) are governed, to a large measure, by poorly studied behavior of hydrogen atoms in the lattice. The crystal chemical state and the mobility of a proton intercalated into yttrium barium cuprate have been investigated by the isotope exchange and inelastic neutron scattering techniques. By their behavior in the process of inelastic neutron scattering, a substantial fraction of protons can be considered mechanically free particles without chemical bonding with oxygen ions. The self-diffusion coefficient of a proton is estimated to be several orders of magnitude larger than that of oxygen ions, the latter coefficient being equal to 10−13 cm2 s−1 at 490 K. Considerable changes in the lattice parameters and local charge distribution in the copper-oxygen subsystem are revealed by the x-ray powder diffraction analysis and nuclear quadrupole resonance (NQR). Discrete changes in the interplanar spacings along the c axis and in the Cu NQR frequencies with a gradual variation in the degrees of hydration and oxidation indicate the formation of hydrocuprate and (or) oxyhydrocuprate in the matrix of the initial material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. W. Chu, D. H. Hor, L. Meng, et al., Phys. Rev. Lett. 58, 405 (1987).

    ADS  Google Scholar 

  2. E. K. Shalkova, Yu. M. Baikov, and T. A. Ushakova, Superconductivity 5(1), 22 (1992).

    Google Scholar 

  3. T. Hirata, Phys. Status Solidi 156(2), 227 (1996).

    Google Scholar 

  4. Yu. M. Baikov, Sverkhprovodimost: Fiz., Khim., Tekh. 7(7), 1208 (1994).

    Google Scholar 

  5. Yu. M. Baikov and S. E. Nikitin, Solid State Ionics 86–88, 673 (1996).

    Google Scholar 

  6. Yu. M. Baikov, Zh. Neorg. Khim. 43(1), 22 (1998).

    Google Scholar 

  7. Yu. M. Baikov, S. E. Nikitin, Yu. P. Stepanov, and V. M. Egorov, Fiz. Tverd. Tela (S.-Peterburg) 39, 823 (1997) [Phys. Solid State 39, 729 (1997)].

    Google Scholar 

  8. Yu. M. Baikov and S. E. Nikitin, in Proceedings of the Third International Symposium on Ionic and Mixed Conducting Ceramics, Paris, France, 1997, Ed. by T. A. Ramanarajanan (Electrochemical Society Inc. Proc. 97-24, 1997), p. 390.

  9. . W. Gunther and R. Schöllhorn, Physica C 271, 241 (1996).

    Google Scholar 

  10. R. Borner, W. Paulus, R. Schöllhorn, et al., Adv. Mater. 7(1), 55 (1995).

    Google Scholar 

  11. P. V. Gel’d, R. A. Ryabov, and L. P. Mokhracheva, Hydrogen and Physical Properties of Metals and Alloys: Transition Metal Hydrides (Nauka, Moscow, 1985).

    Google Scholar 

  12. H. Yasuoka, T. Shimizu, T. Imai, et al., Hyperfine Interact. 49, 167 (1989).

    Google Scholar 

  13. I. Heinemaa, H. Lütgemeier, S. Pekker, et al., Appl. Magn. Reson. 3, 689 (1992).

    Google Scholar 

  14. H. Lütgemeier, S. Schmenn, P. Menffels, et al., Physica C 267, 191 (1996).

    Article  ADS  Google Scholar 

  15. Ph. Colomban and J. Tomkinson, Solid State Ionics 97, 123 (1997).

    Article  Google Scholar 

  16. Yu. M. Baikov, W. Gunther, V. P. Gorelov, et al., Ionics 4(5/6), 347 (1998).

    Google Scholar 

  17. Yu. M. Baikov, Zh. Neorg. Khim. 43(2), 192 (1998).

    Google Scholar 

  18. Yu. M. Baikov, E. K. Shalkova, and T. A. Ushakova, Superconductivity 6(3), 349 (1993).

    Google Scholar 

  19. M. Yoshimura, S. Inoue, and Y. Ikuma, Solid State Ionics 49, 39 (1991).

    Article  Google Scholar 

  20. K. D. Kreuer, Chem. Mater. 8(3), 610 (1996).

    Article  Google Scholar 

  21. Yu. M. Baikov and E. K. Shalkova, J. Solid State Chem. 97, 224 (1992).

    Article  ADS  Google Scholar 

  22. Yu. M. Baikov, B. S. Nikolaev, T. A. Perevalova, et al., Izv. Akad. Nauk SSSR, Neorg. Mater. 24, 615 (1988).

    Google Scholar 

  23. K. D. Kreuer, W. Muench, M. Ise, et al., Phys. Chem. 101(9), 1344 (1997).

    Google Scholar 

  24. J. Tomkinson, Spectrochim. Acta, Part A 48(3), 329 (1992).

    Article  MathSciNet  Google Scholar 

  25. Yu. M. Baikov, V. M. Egorov, I. N. Zimkin, and Yu. P. Stepanov, Zh. Neorg. Khim. 42(10), 1620 (1997).

    Google Scholar 

  26. Sh. Edo and T. Takama, Jpn. J. Appl. Phys. 37, 3956 (1998).

    Article  Google Scholar 

  27. H. Glückler, Ch. Niedermaier, G. Nowitzke, et al., J. Less-Common Met. 164–165, 1016 (1990).

    Google Scholar 

  28. W. K. Dawson, C. Boekema, L. Lichti, and D. W. Coone, Physica C 183–189, 1221 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 42, No. 6, 2000, pp. 995–1003.

Original Russian Text Copyright © 2000 by Ba\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\)kov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baikov, Y.M. Intercalated hydrogen in yttrium barium cuprate: The state and mobility of a “Guest” and modification of the “Host” properties. Phys. Solid State 42, 1026–1035 (2000). https://doi.org/10.1134/1.1131342

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1131342

Keywords

Navigation