Skip to main content
Log in

Geometrical laws in inorganic chemistry

  • Theory of Crystal Structures
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

On the basis of an original interpretation of the crystal state, it is shown that most of the structural types are determined by a small set of planar nets densely filled with the heaviest atoms of the structure. These nets are combined into atomic sublattices (matrices of the structure types) by the operations of (pseudo) symmetry, thus reducing the number of the degrees of freedom in the structure, which, in turn, provides structure stability. It is shown on examples of heavy-cation oxides, fluorides, and sulfides that the number of the types of such matrices (F-, I-, etc.) is limited. Each type is characterized by a certain structure-determining complex of mutually intersecting crystallographic planes parallel to the most densely filled atomic nets. Most of the atomic nets considered in crystal chemistry are, in fact, various sections of the sublattices-matrices formed by a limited number of densely filled atomic nets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. V. Belov, Structure of Ionic Crystals and Metal Phases (Akad. Nauk SSSR, Moscow, 1947), p. 238.

    Google Scholar 

  2. A. F. Wells, Structural Inorganic Chemistry (Clarendon, Oxford, 1984; Mir, Moscow, 1987), Vol. 1, p. 408.

    Google Scholar 

  3. P. I. Kripyakevich, Structure Types of Intermetallic Compounds (Nauka, Moscow, 1977), p. 288.

    Google Scholar 

  4. W. B. Pearson, Crystal Chemistry and Physics of Metals and Alloys (Wiley, New York, 1972; Mir, Moscow, 1977), Chap. 1.

    Google Scholar 

  5. S. V. Borisov, Zh. Strukt. Khim. 34(5), 116 (1992).

    Google Scholar 

  6. S. V. Borisov, Zh. Strukt. Khim. 37(5), 907 (1996).

    Google Scholar 

  7. S. V. Borisov and R. F. Klevtsova, Kristallografiya 32(1), 113 (1987) [Sov. Phys. Crystallogr. 32 (1), 62 (1987)].

    Google Scholar 

  8. N. A. Bliznyuk and S. V. Borisov, Zh. Strukt. Khim. 34(2), 145 (1992).

    MathSciNet  Google Scholar 

  9. S. V. Borisov, Zh. Strukt. Khim. 27(3), 164 (1986).

    MathSciNet  Google Scholar 

  10. S. V. Borisov, N. A. Bliznyuk, and E. S. Kuklina, Zh. Strukt. Khim. 35(3), 3 (1994).

    Google Scholar 

  11. I. Narai-Sabo, Inorganic Crystallochemistry (Hungary Academy of Sciences, Budapest, 1969).

    Google Scholar 

  12. S. V. Borisov, N. V. Podberezskaya, S. A. Magarill, and N. V. Pervukhina, Zh. Strukt. Khim. 38(5), 908 (1997).

    Google Scholar 

  13. S. V. Borisov, N. V. Podberezskaya, N. V. Pervukhina, and S. A. Magarill, Z. Kristallogr. 213, 253 (1998).

    Google Scholar 

  14. R. F. Klevtsova, S. V. Borisov, N. A. Bliznyuk, et al., Zh. Strukt. Khim. 32(6), 127 (1991).

    Google Scholar 

  15. B. K. Vainshtein and R. L. Kayushina, Kristallografiya 11(4), 526 (1966) [Sov. Phys. Crystallogr. 11 (4), 468 (1966)].

    Google Scholar 

  16. S. V. Borisov, Zh. Strukt. Khim. 38, 1156 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Kristallografiya, Vol. 45, No. 5, 2000, pp. 779–783.

Original Russian Text Copyright © 2000 by Borisov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borisov, S.V. Geometrical laws in inorganic chemistry. Crystallogr. Rep. 45, 709–713 (2000). https://doi.org/10.1134/1.1312905

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1312905

Keywords

Navigation