Skip to main content
Log in

Kinematic parameters of young subsystems and the galactic rotation curve

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We analyze the space velocities of blue supergiants, long-period Cepheids, and young open star clusters (OSCs), as well as the H I and H II radial-velocity fields by the maximum-likelihood method. The distance scales of the objects are matched both by comparing the first derivatives of the angular velocity Ω′ determined separately from radial velocities and proper motions and by the statistical-parallax method. The former method yields a short distance scale (for R 0=7.5 kpc, the assumed distances should be increased by 4%), whereas the latter method yields a long distance scale (for R 0=8.5 kpc, the assumed distances should be increased by 16%). We cannot choose between these two methods. Similarly, the distance scale of blue supergiants should be shortened by 9% and lengthened by 3%, respectively. The H II distance scale is matched with the distance scale of Cepheids and OSCs by comparing the derivatives Ω′ determined for H II from radial velocities and for Cepheids and OSCs from space velocities. As a result, the distances to H II regions should be increased by 5% in the short distance scale. We constructed the Galactic rotation curve in the Galactocentric distance range 2–14 kpc from the radial velocities of all objects with allowance for the difference between the residual-velocity distributions. The axial ratio of the Cepheid+OSC velocity ellipsoid is well described by the Lindblad relation, while σu≈σv for gas. The following rotation-curve parameters were obtained: Ω0=(27.5±1.4) km s−1 kpc−1 and A=(17.1±0.5) km s−1 kpc−1 for the short distance scale (R 0=7.5 kpc); and Ω0=(26.6±1.4) km s−1 kpc−1 and A=(15.4±0.5) km s−1 kpc−1 for the long distance scale (R 0=8.5 kpc). We propose a new method for determining the angular velocity Ω0 from stellar radial velocities alone by using the Lindblad relation. Good agreement between the inferred Ω0 and our calculations based on space velocities suggests that the Lindblad relation holds throughout the entire sample volume. Our analysis of the heliocentric velocities for samples of young objects reveals noticeable streaming motions (with a velocity lag of ∼7 km s−1 relative to the LSR), whereas a direct computation of the perturbation amplitudes in terms of the linear density-wave theory yields a small amplitude for the tangential perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Barbier-Brossat and P. Figon, Astron. Astrophys., Suppl. Ser. 142, 217 (2000).

    Article  ADS  Google Scholar 

  2. H. Baumgardt, C. Dettbarn, and R. Wielen, Astron. Astrophys., Suppl. Ser. 146, 251 (2000).

    Article  ADS  Google Scholar 

  3. L. N. Berdnikov, O. V. Vozyakova, and A. K. Dambis, Pis'ma Astron. Zh. 22, 936 (1996) [Astron. Lett. 22, 838 (1996)].

    ADS  Google Scholar 

  4. R. Bottema, Astron. Astrophys. 275, 16 (1993).

    ADS  Google Scholar 

  5. J. Brand and L. Blitz, Astron. Astrophys. 275, 67 (1993).

    ADS  Google Scholar 

  6. D. P. Clemens, Astrophys. J. 295, 422 (1985).

    Article  ADS  Google Scholar 

  7. A. K. Dambis, Pis'ma Astron. Zh. 16, 522 (1990) [Sov. Astron. Lett. 16, 224 (1990)].

    ADS  Google Scholar 

  8. A. K. Dambis, Pis'ma Astron. Zh. 25, 10 (1999) [Astron. Lett. 25, 7 (1999)].

    Google Scholar 

  9. A. K. Dambis and A. S. Rastorguev, Pis'ma Astron. Zh. 27, 132 (2001) [Astron. Lett. 27, 108 (2001)].

    Google Scholar 

  10. A. K. Dambis, A. M. Mel'nik, and A. S. Rastorguev, Pis'ma Astron. Zh. 21, 331 (1995) [Astron. Lett. 21, 291 (1995)].

    ADS  Google Scholar 

  11. A. K. Dambis, A. M. Mel'nik, and A. S. Rastorguev, Pis'ma Astron. Zh. 27, 68 (2001) [Astron. Lett. 27, 58 (2001)].

    Google Scholar 

  12. A. K. Dambis, E. V. Glushkova, A. M. Mel'nik, and A. S. Rastorguev, Astron. Astrophys. Trans. 20, 161 (2001).

    Google Scholar 

  13. W. Dehnen and J. J. Binney, Mon. Not. R. Astron. Soc. 298, 387 (1998).

    Article  ADS  Google Scholar 

  14. R. Drimmel and D. N. Spergel, Astrophys. J. 556, 181 (2001).

    Article  ADS  Google Scholar 

  15. M. Duflot, P. Figon, and N. Meyssonnier, Astron. Astrophys., Suppl. Ser. 114, 269 (1995).

    ADS  Google Scholar 

  16. Yu. N. Efremov, Sites of Star Formation in Galaxies: Star Complexes and Spiral Arms (Nauka, Moscow, 1989).

    Google Scholar 

  17. M. Feast, F. Pont, and P. Whitelock, Mon. Not. R. Astron. Soc. 298, L43 (1998).

    Article  ADS  Google Scholar 

  18. J. Fernley, T. G. Barnes, I. Skillen, et al., Astron. Astrophys. 330, 515 (1998).

    ADS  Google Scholar 

  19. M. Fich, L. Blitz, and A. A. Stark, Astrophys. J. 342, 272 (1989).

    Article  ADS  Google Scholar 

  20. H. T. Freudenreich, Astrophys. J. 492, 495 (1998).

    Article  ADS  Google Scholar 

  21. E. V. Glushkova, A. K. Dambis, A. M. Mel'nik, and A. S. Rastorguev, Astron. Astrophys. 329, 514 (1998).

    ADS  Google Scholar 

  22. E. V. Glushkova, A. K. Dambis, and A. S. Rastorguev, Astron. Astrophys. Trans. 18, 349 (1999).

    Google Scholar 

  23. A. Gould and P. Popowski, Astrophys. J. 508, 844 (1998).

    Article  ADS  Google Scholar 

  24. S. L. Hawley, W. H. Jeffreys, T. G. Barnes III, and Lai Wan, Astrophys. J. 302, 626 (1986).

    Article  ADS  Google Scholar 

  25. M. Honma and Y. Sofue, Publ. Astron. Soc. Jpn. 49, 453 (1997).

    ADS  Google Scholar 

  26. D. K. Karimova and E. D. Pavlovskaya, Astron. Zh. 50, 737 (1973) [Sov. Astron. 17, 470 (1973)].

    ADS  Google Scholar 

  27. S. Kent, T. M. Dame, and J. Fazio, Astrophys. J. 378, 131 (1991).

    Article  ADS  Google Scholar 

  28. P. N. Kholopov, Astron. Zh. 57, 12 (1980) [Sov. Astron. 24, 7 (1980)].

    ADS  Google Scholar 

  29. J. R. D. Lepine, Yu. N. Mishurov, and S. Yu. Dedikov, Astrophys. J. 546, 234 (2001).

    ADS  Google Scholar 

  30. J. R. Lewis and K. C. Freeman, Astron. J. 97, 139 (1989).

    Article  ADS  Google Scholar 

  31. C. C. Lin, C. Yuan, and F. H. Shu, Astrophys. J. 155, 721 (1969).

    Article  ADS  Google Scholar 

  32. S. Malhotra, Astrophys. J. 448, 138 (1995).

    Article  ADS  Google Scholar 

  33. F. Maeder and G. Meynet, Astron. Astrophys., Suppl. Ser. 89, 451 (1991).

    ADS  Google Scholar 

  34. A. M. Mel'nik, A. K. Dambis, and A. S. Rastorguev, Pis'ma Astron. Zh. 27, 611 (2001) [Astron. Lett. 27, 521(2001)].

    Google Scholar 

  35. M. R. Merrifield, Astron. J. 103, 1552 (1992).

    Article  ADS  Google Scholar 

  36. Yu. N. Mishurov, E. D. Pavlovskaya, and A. A. Suchkov, Astron. Zh. 56, 268 (1979) [Sov. Astron. 23, 147 (1979 )].

    ADS  Google Scholar 

  37. Yu. N. Mishurov, I. A. Zenina, A. K. Dambis, et al., Astron. Astrophys. 323, 775 (1997).

    ADS  Google Scholar 

  38. C. A. Murray, Vectorial Astrometry (A. Hilger, Bristol, 1983; Naukova Dumka, Kiev, 1986).

    Google Scholar 

  39. I. I. Nikiforov, Astron. Zh. 76, 403 (1999) [Astron. Rep. 43, 345 (1999)].

    Google Scholar 

  40. I. I. Nikiforov and I. V. Petrovskaya, Astron. Zh. 71, 725 (1994) [Astron. Rep. 38, 642 (1994)].

    ADS  Google Scholar 

  41. F. Pont, M. Mayor, and G. Burki, Astron. Astrophys. 285, 415 (1994).

    ADS  Google Scholar 

  42. P. Popowski and A. Gould, Astrophys. J. 506, 259 (1998).

    ADS  Google Scholar 

  43. A. S. Rastorguev, Determination of Rotation Curve and Scale of Distance in Galaxy, http://www.astronet.ru:8101/db/msg/1172553.

  44. A. S. Rastorguev, E. V. Glushkova, A. K. Dambis, and M. V. Zabolotskikh, Pis'ma Astron. Zh. 25, 689 (1999) [Astron. Lett. 25, 595 (1999)].

    Google Scholar 

  45. A. S. Rastorguev, E. V. Glushkova, M. V. Zabolotskikh, and H. Baumgardt, Astron. Astrophys. Trans. 20, 103 (2001).

    Google Scholar 

  46. K. Rohlfs, Lectures on Density Wave Theory (Springer-Verlag, Berlin, 1977; Mir, Moscow, 1980).

    Google Scholar 

  47. W. L. H. Shuter, Mon. Not. R. Astron. Soc. 199, 109 (1982).

    ADS  Google Scholar 

  48. J. Torra, D. Fernandez, F. Figueras, and F. Comeron, Astrophys. Space Sci. 272, 109 (2000).

    Article  ADS  Google Scholar 

  49. T. Tsujimoto, M. Miyamoto, and Y. Yoshii, Astrophys. J. Lett. 492, L79 (1998).

    Article  ADS  Google Scholar 

  50. P. C. van der Kruit and K. C. Freeman, Astrophys. J. 303, 556 (1986).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Pis'ma v Astronomicheski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Zhurnal, Vol. 28, No. 7, 2002, pp. 516–528.

Original Russian Text Copyright © 2002 by Zabolotskikh, Rastorguev, Dambis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zabolotskikh, M.V., Rastorguev, A.S. & Dambis, A.K. Kinematic parameters of young subsystems and the galactic rotation curve. Astron. Lett. 28, 454–464 (2002). https://doi.org/10.1134/1.1491968

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1491968

Key words

Navigation