Skip to main content
Log in

Pressure-produced ionization of nonideal plasma in a megabar range of dynamic pressures

  • Plasma, Gases
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The low-frequency electrical conductivity of strongly nonideal hydrogen, helium, and xenon plasmas was measured in the megabar range of pressures. The plasmas in question were generated by the method of multiple shock compression in planar and cylindrical geometries, whereby it was possible to reduce effects of irreversible heating and to implement a quasi-isentropic regime. As a result, plasma states at pressures in the megabar range were realized, where the electron concentration could be as high as n e ≈2×023 cm−3, which may correspond to either a degenerate or a Boltzmann plasma characterized by a strong Coulomb Γ D =1–10) and a strong interatomic Γ a =r a n 1/3a ∼1) interaction. A sharp increase (by three to five orders of magnitude) in the electrical conductivity of a strongly nonideal plasma due to pressure-produced ionization was recorded, and theoretical models were invoked to describe this increase. Experimental data available in this region and theoretical models proposed by various authors are analyzed. The possibility of a first-order “phase transition” in a strongly nonideal plasma is indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Encyclopedia of Low-Temperature Plasma, Ed. by V. E. Fortov (Nauka, Moscow, 2000).

    Google Scholar 

  2. V. K. Gryaznov, I. L. Iosilevskii, Yu. G. Krasnikov, et al., Thermal Properties of Working Media of Gas-Phase Nuclear Reactor, Ed. by V. M. Ievlev (Atomizdat, Moscow, 1980).

    Google Scholar 

  3. V. E. Fortov and I. T. Yakubov, Nonideal Plasma (Énergoatomizdat, Moscow, 1994).

    Google Scholar 

  4. L. D. Landau and Yu. B. Zel’dovich, Zh. Éksp. Teor. Fiz. 14, 32 (1944).

    Google Scholar 

  5. N. F. Mott and E. A. Davis, Electron Processes in Non-Crystalline Materials, 2nd ed. (Clarendon Press, Oxford, 1979; Mir, Moscow, 1982).

    Google Scholar 

  6. F. Hensel and E. U. Frank, Rev. Mod. Phys. 40, 697 (1968).

    Article  ADS  Google Scholar 

  7. A. G. Barsukov, P. E. Kovrov, V. M. Kuligin, et al., in Proceedings of 8th IAEA Conference (1989), Vol. 1, p. 83.

    Google Scholar 

  8. V. A. Alekseev and A. A. Vedenov, Usp. Fiz. Nauk 102, 665 (1970) [Sov. Phys.-Usp. 13, 522 (1970)].

    Google Scholar 

  9. A. W. DeSilva and J. D. Katsouros, Phys. Rev. E 57, 5945 (1998).

    Article  ADS  Google Scholar 

  10. A. V. Bushman, B. L. Glushak, V. K. Gryaznov, et al., Pis’ma Zh. Éksp. Teor. Fiz. 44, 375 (1986) [JETP Lett. 44, 480 (1986)].

    Google Scholar 

  11. E. G. Maksimov, Usp. Fiz. Nauk 169, 1223 (1999) [Phys.-Usp. 42, 1121 (1999)].

    Google Scholar 

  12. E. Wigner and H. B. Huntington, J. Chem. Phys. 3, 764 (1935).

    Article  Google Scholar 

  13. A. A. Abrikosov, Astron. Zh. 31, 112 (1954).

    Google Scholar 

  14. N. W. Ashkroft, Phys. Rev. Lett. 21, 1748 (1968).

    ADS  Google Scholar 

  15. E. G. Brovman, Yu. Kogan, and A. Kholac, Zh. Éksp. Teor. Fiz. 61, 2429 (1971) [Sov. Phys. JETP 34, 1300 (1971)].

    Google Scholar 

  16. V. P. Trubitsyn, Fiz. Tverd. Tela (Leningrad) 8, 862 (1966) [Sov. Phys. Solid State 8, 688 (1966)].

    Google Scholar 

  17. M. Ross and A. K. McMahan, Phys. Rev. B 21, 1658 (1980).

    ADS  Google Scholar 

  18. D. A. Young, A. K. McMahan, and M. Ross, Phys. Rev. B 24, 5119 (1981).

    Article  ADS  Google Scholar 

  19. J. C. Boettger, Phys. Rev. B 33, 6788 (1986).

    Article  ADS  Google Scholar 

  20. K. A. Goettel, J. H. Eggert, I. F. Silvera, and W. C. Moss, Phys. Rev. Lett. 62, 665 (1989).

    Article  ADS  Google Scholar 

  21. E. N. Avrorin, B. K. Vodolaga, B. A. Simonenko, and V. E. Fortov, Usp. Fiz. Nauk 163(5), 1 (1993) [Phys.-Usp. 36, 337 (1993)].

    Google Scholar 

  22. W. Ebeling, A. Förster, V. Fortov, V. Gryaznov, and A. Polishchuk, Thermophysical Properties of Hot Dense Plasmas (Teubner, Stuttgart, 1991).

    Google Scholar 

  23. D. Saumon and G. Chabrier, Phys. Rev. Lett. 62, 2397 (1989); D. Saumon and G. Chabrier, Phys. Rev. A 46, 2084 (1992).

    Article  ADS  Google Scholar 

  24. I. A. Mulenko, E. N. Olejnikova, A. L. Khomkin, et al., Phys. Lett. A 289, 141 (2001).

    Article  ADS  Google Scholar 

  25. G. É. Norman and A. N. Starostin, Teplofiz. Vys. Temp. 8, 413 (1970).

    Google Scholar 

  26. M. A. Mochalov and O. N. Kuznetsov, in Abstracts of III Khariton Topical Readings (Sarov, 2001), p. 108.

  27. F. V. Grigor’ev, S. B. Kormer, O. L. Mikhailova, et al., Zh. Éksp. Teor. Fiz. 75, 1683 (1978) [Sov. Phys. JETP 48, 847 (1978)].

    ADS  Google Scholar 

  28. S. I. Belov, G. V. Boriskov, A. I. Bykov, et al., Pis’ma Zh. Éksp. Teor. Fiz. 76, 508 (2002) [JETP Lett. 76, 433 (2002)].

    Google Scholar 

  29. R. S. Hawke, T. J. Burgers, D. E. Duerre, et al., Phys. Rev. Lett. 41, 994 (1978).

    Article  ADS  Google Scholar 

  30. A. I. Pavlovskii, G. V. Boriskov, et al., in Megagauss Technology and Pulsed Power Applications, Ed. by C. M. Fowler (Plenum, New York and London, 1987).

    Google Scholar 

  31. L. B. Da Silva, P. Celliers, G. W. Collins, et al., Phys. Rev. Lett. 78, 483 (1997).

    ADS  Google Scholar 

  32. A. N. Mostovych, Y. Chan, T. Lehecha, et al., Phys. Rev. Lett. 85, 3870 (2000).

    Article  ADS  Google Scholar 

  33. M. D. Knudsen, D. L. Hanson, J. B. Bailey, et al., Phys. Rev. Lett. 90, 035505 (2003).

    Google Scholar 

  34. N. S. Holmes, M. Ross, and W. J. Nellis, Phys. Rev. B 52, 15835 (1995).

    Google Scholar 

  35. W. J. Nellis, S. T. Weir, and A. C. Mitchell, Rev. High Pressure Sci. Technol. 7, 870 (1998); S. T. Weir, A. C. Mitchell, and W. J. Nellis, Phys. Rev. Lett. 76, 1860 (1996).

    Google Scholar 

  36. V. E. Fortov, V. Ya. Ternovoi, S. V. Kvitov, et al., Pis’ma Zh. Éksp. Teor. Fiz. 69, 874 (1999) [JETP Lett. 69, 926 (1999)]; V. Ya. Ternovoi, A. S. Filimonov, V. E. Fortov, et al., Physica B (Amsterdam) 265, 6 (1999).

    Google Scholar 

  37. D. Beule, W. Ebeling, A. Förster, et al., Phys. Rev. B 59, 14177 (1999).

  38. M. Robnic and W. Kundt, Astron. Astrophys. 120, 227 (1983).

    ADS  Google Scholar 

  39. P. Haronska, D. Krempt, et al., Wiss. Z. Wilhelm-Pieck-Univ. Rostock, Naturwiss. Reihe 36, 98 (1987).

    Google Scholar 

  40. W. J. Nellis, Planet. Space Sci. 48, 671 (2000).

    Article  ADS  Google Scholar 

  41. V. B. Mintsev, V. Ya. Ternovoi, V. K. Gryaznov, et al., in Shock Compression of Condensed Matter-1999, Ed. by S. C. Schmidt, D. P. Dandekar, and J. W. Forbes (Woodbury, New York, 2000), p. 987.

    Google Scholar 

  42. V. Ya. Ternovoi, A. S. Filimonov, A. A. Pyalling, et al., in Shock Compression of Condensed Matter-2001, Ed. by M. D. Furnish, N. N. Thadhani, and Y. Horie (AIP Press, New York, 2002), p. 107.

    Google Scholar 

  43. V. Ya. Ternovoi, in Nonstationary Problems in Hydrodynamics (Inst. Gidrodin., Sib. Otd. Akad. Nauk SSSR, 1980), No. 48, p. 141.

  44. S. T. Weir, A. C. Mitchell, and W. J. Nellis, J. Appl. Phys. 80, 1522 (1996).

    Article  ADS  Google Scholar 

  45. L. M. Barker, T. G. Trucano, J. L. Wize, and J. R. Asay, in Proceedings of Conference on Shock Waves in Condensed Matter-85 (Plenum, New York, 1986), p. 455.

    Google Scholar 

  46. H. Juranek, R. Redmer, G. Roepke, et al., Plasma Phys. 39, 251 (1999).

    Google Scholar 

  47. A. V. Bushman, I. V. Lomonosov, and V. E. Fortov, Equations of State of Metals at High Energy Densities (Inst. Probl. Khim. Fiz., Chernogolovka, 1992).

    Google Scholar 

  48. I. A. Adamskaya, F. V. Grigor’ev, O. L. Mikhailova, et al., Zh. Éksp. Teor. Fiz. 93, 647 (1987) [Sov. Phys. JETP 66, 366 (1987)].

    ADS  Google Scholar 

  49. V. D. Urlin, M. A. Mochalov, and O. L. Mikhailova, High Press. Res. 8, 595 (1992).

    Google Scholar 

  50. V. D. Urlin, M. A. Mochalov, and O. L. Mikhailova, Zh. Éksp. Teor. Fiz. 111, 2099 (1997) [JETP 84, 1145 (1997)].

    Google Scholar 

  51. E. I. Zababakhin, Mechanics in USSR for 50 Years (Nauka, Moscow, 1979).

    Google Scholar 

  52. A. I. Pavlovskii, G. D. Kuleshov, G. V. Sklizkov, et al., Dokl. Akad. Nauk SSSR 160, 68 (1965) [Sov. Phys. Dokl. 10, 30 (1965)].

    Google Scholar 

  53. A. A. Brish, M. S. Tarasov, and V. A. Tsukerman, Zh. Éksp. Teor. Fiz. 38, 22 (1960) [Sov. Phys. JETP 11, 15 (1960)].

    Google Scholar 

  54. V. M. Zamalin, G. É. Norman, and V. S. Filinov, Monte Carlo Method in Statistical Thermodynamics (Nauka, Moscow, 1977; Mir, Moscow, 1977).

    Google Scholar 

  55. A. A. Likal’ter, Zh. Éksp. Teor. Fiz. 113, 1094 (1998) [JETP 86, 598 (1998)].

    Google Scholar 

  56. R. Redmer, G. Roepke, S. Kuhlbrodt, and H. Reinholz, Contrib. Plasma Phys. 41, 163 (2001).

    Article  Google Scholar 

  57. Yu. V. Ivanov, V. E. Fortov, V. B. Mintsev, and A. N. Dremin, Zh. Éksp. Teor. Fiz. 71, 216 (1976) [Sov. Phys. JETP 44, 112 (1976)].

    ADS  Google Scholar 

  58. V. B. Mintsev and V. E. Fortov, Pis’ma Zh. Éksp. Teor. Fiz. 30, 401 (1979) [JETP Lett. 30, 375 (1979)].

    Google Scholar 

  59. V. B. Mintsev, V. E. Fortov, and V. K. Gryaznov, Zh. Éksp. Teor. Fiz. 79, 116 (1980) [Sov. Phys. JETP 52, 59 (1980)].

    ADS  Google Scholar 

  60. M. I. Eremets, E. A. Gregoryanz, V. V. Struzhkin, et al., Phys. Rev. Lett. 85, 2797 (2000).

    Article  ADS  Google Scholar 

  61. S. V. Dudin, V. E. Fortov, et al., in Shock Compression of Condensed Matter-1997, Ed. by S. C. Schmidt, D. P. Dandekar, and J. W. Forbes (AIP Press, New York, 1998), p. 793.

    Google Scholar 

  62. L. A. Gatilov, V. D. Glukhodedov, F. V. Grigor’ev, et al., Prikl. Mekh. Tekh. Fiz., No. 1, 99 (1985).

  63. M. I. Dolotenko, A. I. Bykov, et al., in Megagauss and Megaamper Pulsed Power and Related Topics, Ed. by V. Chernishev, V. Selimir, and L. Plyashkevitch (VHI-IEF, Sarov, 1997), p. 805.

    Google Scholar 

  64. V. D. Glukhodedov, S. I. Kirshanov, T. S. Lebedeva, and M. A. Mochalov, Zh. Éksp. Teor. Fiz. 116, 551 (1999) [JETP 89, 292 (1999)].

    Google Scholar 

  65. L. I. Veeser, C. A. Ekdah, H. Oona, et al., in Abstracts of VIII International Conference on Megagauss Magnetic Field Generation and Related Topics, Tallahassee (1998), p. 239.

  66. K. Seeger, Semiconductor Physics ((Springer, Berlin, 1974; Mir, Moscow, 1977).

    Google Scholar 

  67. V. K. Gryaznov, M. V. Zhernokletov, V. N. Zubarev, et al., Zh. Éksp. Teor. Fiz. 78, 573 (1980) [Sov. Phys. JETP 51, 288 (1980)].

    ADS  Google Scholar 

  68. J. M. Zaiman, Principles of the Theory of Solids, 2nd ed. (Cambridge Univ. Press, London, 1972; Mir, Moscow, 1966).

    Google Scholar 

  69. W. J. Nellis, S. T. Weir, N. C. Holmes, et al., UCRL-125039, LLNL (1996).

  70. V. K. Gryaznov, I. L. Iosilevskii, and V. E. Fortov, Pis’ma Zh. Tekh. Fiz. 8, 1378 (1982) [Sov. Tech. Phys. Lett. 8, 592 (1982)].

    Google Scholar 

  71. V. K. Gryaznov and V. E. Fortov, Teplofiz. Vys. Temp. 25, 1208 (1987).

    Google Scholar 

  72. V. K. Gryaznov, M. V. Zhernokletov, I. L. Iosilevskii, et al., Zh. Éksp. Teor. Fiz. 114, 1242 (1998) [JETP 87, 678 (1998)].

    Google Scholar 

  73. I. L. Iosilevskii, Teplofiz. Vys. Temp. 18, 355 (1980).

    Google Scholar 

  74. V. K. Gryaznov, I. L. Iosilevskii, and V. E. Fortov, in Shock Waves and Extremal States of Substance, Ed. by V. E. Fortov, L. V. Al’tshuler, R. F. Trunin, and A. I. Funtikov (Nauka, Moscow, 2000).

    Google Scholar 

  75. D. A. Young, UCRL-52352, LLNL (1977).

  76. A. G. Gaydon and I. R. Hurle, The Shock Tube in High-Temperature Chemical Physics (Chapman and Hall, London, 1963; Mir, Moscow, 1966).

    Google Scholar 

  77. V. B. Mintsev and V. E. Fortov, Teplofiz. Vys. Temp. 20, 745 (1982).

    Google Scholar 

  78. E. S. Yakub, Teplofiz. Vys. Temp. 28, 664 (1990); Physica B (Amsterdam) 265, 31 (1999).

    ADS  Google Scholar 

  79. C. Pierleoni, D. M. Ceperley, B. Bernu, and W. R. Magro, Phys. Rev. Lett. 73, 2145 (1994).

    Article  ADS  Google Scholar 

  80. L. Collins, I. Kwon, J. Kress, et al., Phys. Rev. E 52, 6202 (1995); S. Günter and A. Kötnies, Phys. Rev. E 55, 907 (1997).

    Article  ADS  Google Scholar 

  81. M. Knaup, P. Reinhard, and C. Topffer, Contrib. Plasma Phys. 39, 57 (1999).

    Google Scholar 

  82. G. I. Kerley, in Theoretical Equation of State for Deuterium (National Technical Information Service, Spring-field, VA, 1972), NTIS Document No. LA-47766.

    Google Scholar 

  83. M. Ross, Phys. Rev. B 58, 669 (1998).

    ADS  Google Scholar 

  84. F. Ree, M. Ross, and D. Young, J. Chem. Phys. 79, 1487 (1983).

    ADS  Google Scholar 

  85. R. Keeler, M. Van Thiel, and B. Alder, Physica (Amsterdam) 31, 1437 (1965).

    Article  Google Scholar 

  86. W. Nellis, M. Van Thiel, and A. Mitchel, Phys. Rev. Lett. 48, 816 (1982).

    Article  ADS  Google Scholar 

  87. M. I. Kulish, V. K. Gryaznov, V. B. Mintsev, et al., Teplofiz. Vys. Temp. 33, 967 (1995).

    Google Scholar 

  88. K. A. Goettel, J. H. Eggert, I. F. Silvera, and W. C. Moss, Phys. Rev. Lett. 62, 665 (1989).

    Article  ADS  Google Scholar 

  89. R. Reichlin, K. E. Brister, A. K. McMahan, et al., Phys. Rev. Lett. 62, 669 (1989).

    Article  ADS  Google Scholar 

  90. H. B. Radousky and M. Ross, Phys. Lett. A 129, 43 (1988).

    Article  ADS  Google Scholar 

  91. V. E. Fortov, V. K. Gryaznov, V. B. Mintsev, et al., Contrib. Plasma Phys. 41, 215 (2001).

    Article  Google Scholar 

  92. F. V. Grigor’ev, S. B. Kormer, O. L. Mikhailova, et al., Zh. Éksp. Teor. Fiz. 88, 1271 (1985) [Sov. Phys. JETP 61, 751 (1985)].

    ADS  Google Scholar 

  93. W. J. Nellis, N. C. Holmes, A. C. Mitchell, et al., Phys. Rev. Lett. 53, 1248 (1984).

    ADS  Google Scholar 

  94. V. K. Gryaznov, Yu. V. Ivanov, A. N. Starostin, and V. E. Fortov, Teplofiz. Vys. Temp. 14, 643 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 124, No. 2, 2003, pp. 288–309.

Original Russian Text Copyright © 2003 by Fortov, Ternovo\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\), Zhernokletov, Mochalov, Mikhailov, Filimonov, Pyalling, Mintsev, Gryaznov, Iosilevski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fortov, V.E., Ternovoi, V.Y., Zhernokletov, M.V. et al. Pressure-produced ionization of nonideal plasma in a megabar range of dynamic pressures. J. Exp. Theor. Phys. 97, 259–278 (2003). https://doi.org/10.1134/1.1608993

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1608993

Keywords

Navigation