Skip to main content
Log in

Limiting efficiencies of nonlinear-optical processes in microstructure fibers

  • Atoms, Spectra, Radiation
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The ways of achieving limiting waveguide enhancement of nonlinear-optical processes in microstructure and photonic-crystal fibers are studied. The waveguide enhancement of nonlinear-optical processes is shown to be physically limited because of the competition of diffraction and refractive-index-step radiation confinement. In the case of the limiting refractive-index step values for fused silica fibers, the maximum waveguide enhancement of nonlinear-optical processes is achieved with submicron fiber core diameters. The maximum waveguide enhancement of coherent anti-Stokes Raman scattering in a hollow microstructure fiber relative to the regime of tight focusing is shown to scale as λ 2a 4 with radiation wavelength λ, the inner fiber radius a, and the magnitude of radiation losses α.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, Opt. Lett. 21, y1547 (1996).

    ADS  Google Scholar 

  2. J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, Science 282, 1476 (1998).

    Article  Google Scholar 

  3. Focus Issue of Opt. Express 9(13) (2001), Ed. by K. W. Koch.

    Google Scholar 

  4. Special Issue of J. Opt. Soc. Am. B 19 (2002), Ed. by C. M. Bowden and A. M. Zheltikov.

  5. T. M. Monro, P. J. Bennett, N. G. R. Broderick, and D. J. Richardson, Opt. Lett. 25, 206 (2000).

    ADS  Google Scholar 

  6. A. B. Fedotov, A. M. Zheltikov, L. A. Mel’nikov, et al., Pis’ma Zh. Éksp. Teor. Fiz. 71, 407 (2000) [JETP Lett. 71, 281 (2000)].

    Google Scholar 

  7. M. V. Alfimov, A. M. Zheltikov, A. A. Ivanov, et al., Pis’ma Zh. Éksp. Teor. Fiz. 71, 714 (2000) [JETP Lett. 71, 489 (2000)].

    Google Scholar 

  8. A. M. Zheltikov, Usp. Fiz. Nauk 170, 1203 (2000) [Phys. Usp. 43, 1125 (2000)].

    Google Scholar 

  9. A. M. Zheltikov, M. V. Alfimov, A. B. Fedotov, et al., Zh. Éksp. Teor. Fiz. 120, 570 (2001) [JETP 93, 499 (2001)].

    Google Scholar 

  10. B. J. Eggleton, C. Kerbage, P. S. Westbrook, et al., Opt. Express 9, 698 (2001).

    ADS  Google Scholar 

  11. N. G. R. Broderick, T. M. Monro, P. J. Bennett, and D. J. Richardson, Opt. Lett. 24, 1395 (1999).

    ADS  Google Scholar 

  12. A. B. Fedotov, A. M. Zheltikov, A. P. Tarasevitch, and D. von der Linde, Appl. Phys. B 73, 181 (2001).

    ADS  Google Scholar 

  13. J. C. Knight, J. Arriaga, T. A. Birks, et al., IEEE Photonics Technol. Lett. 12, 807 (2000).

    Article  Google Scholar 

  14. W. H. Reeves, J. C. Knight, P. St. J. Russell, and P. J. Roberts, Opt. Express 10, 609 (2002).

    ADS  Google Scholar 

  15. A. M. Zheltikov, Ultrafast Photonics (in press).

  16. J. K. Ranka, R. S. Windeler, and A. J. Stentz, Opt. Lett. 25, 796 (2000).

    ADS  Google Scholar 

  17. St. Coen, A. H. L. Chau, R. Leonhardt, et al., Opt. Lett. 26, 1356 (2001).

    ADS  Google Scholar 

  18. S. Coen, A. Hing Lun Chau, R. Leonhardt, et al., J. Opt. Soc. Am. B 19, 753 (2002).

    ADS  Google Scholar 

  19. A. N. Naumov, A. B. Fedotov, A. M. Zheltikov, et al., J. Opt. Soc. Am. B 19, 2183 (2002).

    ADS  Google Scholar 

  20. A. B. Fedotov, A. N. Naumov, A. M. Zheltikov, et al., J. Opt. Soc. Am. B 19, 2156 (2002).

    ADS  Google Scholar 

  21. J. M. Dudley, Xun Gu, Lin Xu, et al., Opt. Express 10, 1215 (2002).

    ADS  Google Scholar 

  22. J. Herrmann, U. Griebner, N. Zhavoronkov, et al., Phys. Rev. Lett. 88, 173901 (2002).

    Google Scholar 

  23. J. K. Ranka, R. S. Windeler, and A. J. Stentz, Opt. Lett. 25, 25 (2000).

    ADS  Google Scholar 

  24. W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, et al., J. Opt. Soc. Am. B 19, 2148 (2002).

    ADS  Google Scholar 

  25. S. A. Diddams, D. J. Jones, Jun Ye, et al., Phys. Rev. Lett. 84, 5102 (2000).

    Article  ADS  Google Scholar 

  26. D. J. Jones, S. A. Diddams, J. K. Ranka, et al., Science288, 635 (2000).

    ADS  Google Scholar 

  27. R. Holzwarth, T. Udem, T. W. Hansch, et al., Phys. Rev. Lett. 85, 2264 (2000).

    Article  ADS  Google Scholar 

  28. S. N. Bagayev, A. K. Dmitriyev, S. V. Chepurov, et al., Laser Phys. 11, 1270 (2001).

    Google Scholar 

  29. Th. Udem, S. A. Diddams, K. R. Vogel, et al., Phys. Rev. Lett. 86, 4996 (2001).

    Article  ADS  Google Scholar 

  30. A. Baltuska, T. Fuji, and T. Kobayashi, Opt. Lett. 27, 1241 (2002).

    ADS  Google Scholar 

  31. S. N. Bagayev, V. S. Pivtsov, and A. M. Zheltikov, Quantum Electron. 32, 311 (2002); A. M. Zheltikov, Laser Phys. 12, 878 (2002).

    Google Scholar 

  32. S. Lakó, J. Seres, P. Apai, et al., Appl. Phys. B 76, 267 (2003).

    ADS  Google Scholar 

  33. A. B. Fedotov, Ping Zhou, A. P. Tarasevitch, et al., J. Raman Spectrosc. 33, 888 (2002).

    Article  Google Scholar 

  34. I. Hartl, X. D. Li, C. Chudoba, et al., Opt. Lett. 26, 608 (2001).

    ADS  Google Scholar 

  35. R. F. Cregan, B. J. Mangan, J. C. Knight, et al., Science 285, 1537 (1999).

    Article  Google Scholar 

  36. J. C. Knight and P. St. J. Russell, Science 296, 276 (2002).

    Article  Google Scholar 

  37. S. O. Konorov, A. B. Fedotov, O. A. Kolevatova, et al., Pis’ma Zh. Éksp. Teor. Fiz. 76, 401 (2002) [JETP Lett. 76, 341 (2002)].

    Google Scholar 

  38. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, Science 298, 399 (2002).

    Article  ADS  Google Scholar 

  39. F. Benabid, J. C. Knight, and P. St. J. Russell, Opt. Express 10, 1195 (2002).

    ADS  Google Scholar 

  40. O. A. Kolevatova and A. M. Zheltikov, Laser Phys. (2003) (in press).

  41. A. N. Naumov and A. M. Zheltikov, Kvantovaya Élektron. (Moscow) 32, 129 (2002).

    Google Scholar 

  42. S. O. Konorov, A. B. Fedotov, O. A. Kolevatova, et al., Laser Phys. 13, 652 (2003).

    Google Scholar 

  43. G. P. Agrawal, Nonlinear Fiber Optics (Academic, Boston, 1989; Mir, Moscow, 1996).

    Google Scholar 

  44. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, New York, 1983; Radio i Svyaz’, Moscow, 1987).

    Google Scholar 

  45. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, Opt. Lett. 25, 1415 (2000).

    ADS  Google Scholar 

  46. D. A. Akimov, A. A. Ivanov, M. V. Alfimov, et al., Appl. Phys. B 7, 307 (2002).

    ADS  Google Scholar 

  47. A. B. Fedotov, A. N. Naumov, I. Bugar, et al., IEEE J. Sel. Top. Quantum Electron. 8, 665 (2002).

    Google Scholar 

  48. A. B. Fedotov, P. Zhou, A. N. Naumov, et al., Appl. Phys. B 75, 621 (2002).

    Article  ADS  Google Scholar 

  49. A. M. Zheltikov, Ping Zhou, V. V. Temnov, et al., Quantum Electron. 32, 542 (2002).

    Article  Google Scholar 

  50. A. M. Zheltikov, Usp. Fiz. Nauk 172, 743 (2002) [Phys. Usp. 45, 687 (2002)].

    Google Scholar 

  51. M. Nisoli, S. De Silvestri, and O. Svelto, Appl. Phys. Lett. 68, 2793 (1996).

    ADS  Google Scholar 

  52. M. Nisoli, S. De Silvestri, O. Svelto, et al., Opt. Lett. 22, 522 (1997).

    ADS  Google Scholar 

  53. O. Dühr, E. T. J. Nibbering, G. Korn, et al., Opt. Lett. 24, 34 (1999).

    ADS  Google Scholar 

  54. N. Zhavoronkov and G. Korn, Phys. Rev. Lett. 88, 203901 (2002).

    Google Scholar 

  55. C. G. Durfee III, S. Backus, M. M. Murnane, and H. C. Kapteyn, Opt. Lett. 22, 1565 (1997).

    ADS  Google Scholar 

  56. A. Rundquist, C. G. Durfee III, Z. Chang, et al., Science 280, 1412 (1998).

    Article  ADS  Google Scholar 

  57. Y. Tamaki, K. Midorikawa, and M. Obara, Appl. Phys. B 67, 59 (1998).

    Article  ADS  Google Scholar 

  58. E. Constant, D. Garzella, P. Breger, et al., Phys. Rev. Lett. 82, 1668 (1999).

    Article  ADS  Google Scholar 

  59. R. B. Miles, G. Laufer, and G. C. Bjorklund, Appl. Phys. Lett. 30, 417 (1977).

    Article  ADS  Google Scholar 

  60. A. B. Fedotov, F. Giammanco, A. N. Naumov, et al., Appl. Phys. B 72, 575 (2001).

    ADS  Google Scholar 

  61. A. N. Naumov, F. Giammanco, D. A. Sidorov-Biryukov, et al., Pis’ma Zh. Éksp. Teor. Fiz. 73, 263 (2001) [JETP Lett. 73, 228 (2001)].

    Google Scholar 

  62. E. A. J. Marcatili and R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).

    Google Scholar 

  63. M. J. Adams, An Introduction to Optical Waveguides (Wiley, New York, 1981; Mir, Moscow, 1984).

    Google Scholar 

  64. A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, New York, 1984; Mir, Moscow, 1987).

    Google Scholar 

  65. A. M. Zheltikov and A. N. Naumov, Quantum Electron. 31, 471 (2001).

    Article  Google Scholar 

  66. S. A. Akhmanov and N. I. Koroteev, Methods of Nonlinear Optics in Light Scattering Spectroscopy (Nauka, Moscow, 1981).

    Google Scholar 

  67. G. L. Eesley, Coherent Raman Spectroscopy (Pergamon Press, Oxford, 1981).

    Google Scholar 

  68. S. A. J. Druet and J.-P. E. Taran, Prog. Quantum Electron. 7, 1 (1981).

    Article  Google Scholar 

  69. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, Cambridge, MA, 1988).

    Google Scholar 

  70. W. Kiefer, J. Mol. Struct. 59, 305 (1980).

    Google Scholar 

  71. A. M. Zheltikov and N. I. Koroteev, Usp. Fiz. Nauk 170, 1203 (1999) [Phys. Usp. 43, 1125 (1999)].

    Google Scholar 

  72. G. I. Stegeman, R. Fortenberry, C. Karaguleff, et al., Opt. Lett. 8, 295 (1983).

    ADS  Google Scholar 

  73. W. P. de Boeij, J. S. Kanger, G. W. Lucassen, et al., Appl. Spectrosc. 47, 723 (1993).

    ADS  Google Scholar 

  74. J. S. Kanger, C. Otto, and J. Greve, Appl. Spectrosc. 49, 1326 (1995).

    Article  ADS  Google Scholar 

  75. S. O. Konorov, D. A. Akimov, A. N. Naumov, et al., Pis’ma Zh. Éksp. Teor. Fiz. 75, 74 (2002) [JETP Lett. 75, 66 (2002)]; S. O. Konorov, D. A. Akimov, A. N. Naumov, et al., J. Raman Spectrosc. 33, 955 (2002).

    Google Scholar 

  76. M. D. Levenson and J. J. Song, in Coherent Nonlinear Optics, Ed. by M. S. Feld and V. S. Letokhov (Springer, Berlin, 1980).

    Google Scholar 

  77. P. D. Maker and R. W. Terhune, Phys. Rev. A 137, 801 (1965).

    ADS  Google Scholar 

  78. J. Broeng, S. E. Barkou, T. Söndergaard, and A. Bjarklev, Opt. Lett. 25, 96 (2000).

    ADS  Google Scholar 

  79. N. I. Koroteev, A. N. Naumov, and A. M. Zheltikov, Laser Phys. 4, 1160 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 124, No. 3, 2003, pp. 558–577.

Original Russian Text Copyright © 2003 by Zheltikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheltikov, M. Limiting efficiencies of nonlinear-optical processes in microstructure fibers. J. Exp. Theor. Phys. 97, 505–521 (2003). https://doi.org/10.1134/1.1618337

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1618337

Keywords

Navigation